test_functional_tensor.py 29.2 KB
Newer Older
1
import unittest
ekka's avatar
ekka committed
2
import random
3
import colorsys
4
import math
5
6

from PIL import Image
vfdev's avatar
vfdev committed
7
8
9
10
11
12
13
14
15
from PIL.Image import NEAREST, BILINEAR, BICUBIC

import numpy as np

import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
16
17
18
19


class Tester(unittest.TestCase):

20
21
22
    def _create_data(self, height=3, width=3, channels=3, device="cpu"):
        tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8, device=device)
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().cpu().numpy())
23
24
25
26
        return tensor, pil_img

    def compareTensorToPIL(self, tensor, pil_image, msg=None):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1)))
27
28
        if msg is None:
            msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
29
        self.assertTrue(tensor.cpu().equal(pil_tensor), msg)
30

vfdev's avatar
vfdev committed
31
32
33
34
35
36
37
38
    def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1))).to(tensor)
        mae = torch.abs(tensor - pil_tensor).mean().item()
        self.assertTrue(
            mae < tol,
            msg="{}: mae={}, tol={}: \n{}\nvs\n{}".format(msg, mae, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
        )

39
    def _test_vflip(self, device):
40
        script_vflip = torch.jit.script(F_t.vflip)
41
        img_tensor = torch.randn(3, 16, 16, device=device)
42
        img_tensor_clone = img_tensor.clone()
43
44
45
46
        vflipped_img = F_t.vflip(img_tensor)
        vflipped_img_again = F_t.vflip(vflipped_img)
        self.assertEqual(vflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, vflipped_img_again))
47
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
48
49
50
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
        self.assertTrue(torch.equal(vflipped_img, vflipped_img_script))
51

52
53
54
55
56
57
58
59
    def test_vflip_cpu(self):
        self._test_vflip("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_vflip_cuda(self):
        self._test_vflip("cuda")

    def _test_hflip(self, device):
60
        script_hflip = torch.jit.script(F_t.hflip)
61
        img_tensor = torch.randn(3, 16, 16, device=device)
62
        img_tensor_clone = img_tensor.clone()
63
64
65
66
        hflipped_img = F_t.hflip(img_tensor)
        hflipped_img_again = F_t.hflip(hflipped_img)
        self.assertEqual(hflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, hflipped_img_again))
67
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
68
69
70
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
        self.assertTrue(torch.equal(hflipped_img, hflipped_img_script))
71

72
73
74
75
76
77
78
79
80
    def test_hflip_cpu(self):
        self._test_hflip("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_hflip_cuda(self):
        self._test_hflip("cuda")

    def _test_crop(self, device):
        script_crop = torch.jit.script(F.crop)
81

82
        img_tensor, pil_img = self._create_data(16, 18, device=device)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
99

100
101
102
103
104
105
106
    def test_crop_cpu(self):
        self._test_crop("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_crop_cuda(self):
        self._test_crop("cuda")

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    def test_hsv2rgb(self):
        shape = (3, 100, 150)
        for _ in range(20):
            img = torch.rand(*shape, dtype=torch.float)
            ft_img = F_t._hsv2rgb(img).permute(1, 2, 0).flatten(0, 1)

            h, s, v, = img.unbind(0)
            h = h.flatten().numpy()
            s = s.flatten().numpy()
            v = v.flatten().numpy()

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))

            colorsys_img = torch.tensor(rgb, dtype=torch.float32)
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

    def test_rgb2hsv(self):
        shape = (3, 150, 100)
        for _ in range(20):
            img = torch.rand(*shape, dtype=torch.float)
            ft_hsv_img = F_t._rgb2hsv(img).permute(1, 2, 0).flatten(0, 1)

            r, g, b, = img.unbind(0)
            r = r.flatten().numpy()
            g = g.flatten().numpy()
            b = b.flatten().numpy()

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

            colorsys_img = torch.tensor(hsv, dtype=torch.float32)

143
144
145
146
147
148
149
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)

150
151
            self.assertLess(max_diff, 1e-5)

152
    def _test_adjustments(self, device):
153
154
155
156
157
158
159
        script_adjust_brightness = torch.jit.script(F_t.adjust_brightness)
        script_adjust_contrast = torch.jit.script(F_t.adjust_contrast)
        script_adjust_saturation = torch.jit.script(F_t.adjust_saturation)

        fns = ((F.adjust_brightness, F_t.adjust_brightness, script_adjust_brightness),
               (F.adjust_contrast, F_t.adjust_contrast, script_adjust_contrast),
               (F.adjust_saturation, F_t.adjust_saturation, script_adjust_saturation))
160
161
162
163
164
165
166

        for _ in range(20):
            channels = 3
            dims = torch.randint(1, 50, (2,))
            shape = (channels, dims[0], dims[1])

            if torch.randint(0, 2, (1,)) == 0:
167
                img = torch.rand(*shape, dtype=torch.float, device=device)
168
            else:
169
                img = torch.randint(0, 256, shape, dtype=torch.uint8, device=device)
170

171
            factor = 3 * torch.rand(1).item()
172
            img_clone = img.clone()
173
            for f, ft, sft in fns:
174

175
176
                ft_img = ft(img, factor).cpu()
                sft_img = sft(img, factor).cpu()
177
178
                if not img.dtype.is_floating_point:
                    ft_img = ft_img.to(torch.float) / 255
179
                    sft_img = sft_img.to(torch.float) / 255
180
181
182
183
184
185
186
187

                img_pil = transforms.ToPILImage()(img)
                f_img_pil = f(img_pil, factor)
                f_img = transforms.ToTensor()(f_img_pil)

                # F uses uint8 and F_t uses float, so there is a small
                # difference in values caused by (at most 5) truncations.
                max_diff = (ft_img - f_img).abs().max()
188
                max_diff_scripted = (sft_img - f_img).abs().max()
189
                self.assertLess(max_diff, 5 / 255 + 1e-5)
190
                self.assertLess(max_diff_scripted, 5 / 255 + 1e-5)
191
                self.assertTrue(torch.equal(img, img_clone))
192

193
            # test for class interface
194
            f = transforms.ColorJitter(brightness=factor)
195
196
197
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

198
            f = transforms.ColorJitter(contrast=factor)
199
200
201
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

202
            f = transforms.ColorJitter(saturation=factor)
203
204
205
206
207
208
209
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

        f = transforms.ColorJitter(brightness=1)
        scripted_fn = torch.jit.script(f)
        scripted_fn(img)

210
211
212
213
214
215
216
    def test_adjustments(self):
        self._test_adjustments("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_adjustments_cuda(self):
        self._test_adjustments("cuda")

217
    def test_rgb_to_grayscale(self):
218
        script_rgb_to_grayscale = torch.jit.script(F_t.rgb_to_grayscale)
219
        img_tensor = torch.randint(0, 255, (3, 16, 16), dtype=torch.uint8)
220
        img_tensor_clone = img_tensor.clone()
221
222
223
224
        grayscale_tensor = F_t.rgb_to_grayscale(img_tensor).to(int)
        grayscale_pil_img = torch.tensor(np.array(F.to_grayscale(F.to_pil_image(img_tensor)))).to(int)
        max_diff = (grayscale_tensor - grayscale_pil_img).abs().max()
        self.assertLess(max_diff, 1.0001)
225
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
226
227
228
        # scriptable function test
        grayscale_script = script_rgb_to_grayscale(img_tensor).to(int)
        self.assertTrue(torch.equal(grayscale_script, grayscale_tensor))
229

230
    def _test_center_crop(self, device):
231
232
        script_center_crop = torch.jit.script(F.center_crop)

233
        img_tensor, pil_img = self._create_data(32, 34, device=device)
234
235
236
237
238
239
240
241

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)
242

243
244
245
246
247
248
249
250
    def test_center_crop(self):
        self._test_center_crop("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_center_crop_cuda(self):
        self._test_center_crop("cuda")

    def _test_five_crop(self, device):
251
252
        script_five_crop = torch.jit.script(F.five_crop)

253
        img_tensor, pil_img = self._create_data(32, 34, device=device)
254
255
256
257
258
259
260
261
262
263

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
264

265
266
267
268
269
270
271
272
    def test_five_crop(self):
        self._test_five_crop("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_five_crop_cuda(self):
        self._test_five_crop("cuda")

    def _test_ten_crop(self, device):
273
274
        script_ten_crop = torch.jit.script(F.ten_crop)

275
        img_tensor, pil_img = self._create_data(32, 34, device=device)
276
277
278
279
280
281
282
283
284
285

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
286

287
288
289
290
291
292
293
294
    def test_ten_crop(self):
        self._test_ten_crop("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_ten_crop_cuda(self):
        self._test_ten_crop("cuda")

    def _test_pad(self, device):
295
        script_fn = torch.jit.script(F_t.pad)
296
        tensor, pil_img = self._create_data(7, 8, device=device)
297
298
299
300
301
302
303
304
305
306
307
308

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
309
                    {"padding_mode": "symmetric"},
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
328

329
330
331
        with self.assertRaises(ValueError, msg="Padding can not be negative for symmetric padding_mode"):
            F_t.pad(tensor, (-2, -3), padding_mode="symmetric")

332
333
334
335
336
337
338
339
340
341
    def test_pad_cpu(self):
        self._test_pad("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_pad_cuda(self):
        self._test_pad("cuda")

    def _test_adjust_gamma(self, device):
        script_fn = torch.jit.script(F.adjust_gamma)
        tensor, pil_img = self._create_data(26, 36, device=device)
342
343
344
345
346
347
348
349
350
351

        for dt in [torch.float64, torch.float32, None]:

            if dt is not None:
                tensor = F.convert_image_dtype(tensor, dt)

            gammas = [0.8, 1.0, 1.2]
            gains = [0.7, 1.0, 1.3]
            for gamma, gain in zip(gammas, gains):

352
353
                adjusted_tensor = F.adjust_gamma(tensor, gamma, gain)
                adjusted_pil = F.adjust_gamma(pil_img, gamma, gain)
354
355
356
357
358
359
360
361
362
363
                scripted_result = script_fn(tensor, gamma, gain)
                self.assertEqual(adjusted_tensor.dtype, scripted_result.dtype)
                self.assertEqual(adjusted_tensor.size()[1:], adjusted_pil.size[::-1])

                rbg_tensor = adjusted_tensor
                if adjusted_tensor.dtype != torch.uint8:
                    rbg_tensor = F.convert_image_dtype(adjusted_tensor, torch.uint8)

                self.compareTensorToPIL(rbg_tensor, adjusted_pil)

364
365
366
367
368
369
370
371
                self.assertTrue(adjusted_tensor.allclose(scripted_result))

    def test_adjust_gamma_cpu(self):
        self._test_adjust_gamma("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_adjust_gamma_cuda(self):
        self._test_adjust_gamma("cuda")
372

373
    def _test_resize(self, device):
vfdev's avatar
vfdev committed
374
        script_fn = torch.jit.script(F_t.resize)
375
        tensor, pil_img = self._create_data(26, 36, device=device)
vfdev's avatar
vfdev committed
376
377
378
379
380

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
381
            for size in [32, 26, [32, ], [32, 32], (32, 32), [26, 35]]:
vfdev's avatar
vfdev committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
                    resized_tensor = F_t.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F_pil.resize(pil_img, size=size, interpolation=interpolation)

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

                    if interpolation != NEAREST:
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
408
409
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
410

411
412
413
414
415
416
417
418
    def test_resize_cpu(self):
        self._test_resize("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_resize_cuda(self):
        self._test_resize("cuda")

    def _test_resized_crop(self, device):
419
420
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
421
        tensor, _ = self._create_data(26, 36, device=device)
422
423
424
425
426
        for i in [0, 2, 3]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=i)
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
427
        tensor, _ = self._create_data(26, 36, device=device)
428
429
430
431
432
433
434
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=0)
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

435
436
437
438
439
440
441
442
    def test_resized_crop_cpu(self):
        self._test_resized_crop("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_resized_crop_cuda(self):
        self._test_resized_crop("cuda")

    def _test_affine(self, device):
443
        # Tests on square and rectangular images
vfdev's avatar
vfdev committed
444
445
        scripted_affine = torch.jit.script(F.affine)

446
        for tensor, pil_img in [self._create_data(26, 26, device=device), self._create_data(32, 26, device=device)]:
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

            # 1) identity map
            out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
            self.assertTrue(
                tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
            )
            out_tensor = scripted_affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
            self.assertTrue(
                tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
            )

            if pil_img.size[0] == pil_img.size[1]:
                # 2) Test rotation
                test_configs = [
                    (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
                    (45, None),
                    (30, None),
                    (-30, None),
                    (-45, None),
                    (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
                    (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
                ]
                for a, true_tensor in test_configs:
470
471
472
473
474
475

                    out_pil_img = F.affine(
                        pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                    )
                    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

476
                    for fn in [F.affine, scripted_affine]:
477
478
479
                        out_tensor = fn(
                            tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                        )
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
                        if true_tensor is not None:
                            self.assertTrue(
                                true_tensor.equal(out_tensor),
                                msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                            )
                        else:
                            true_tensor = out_tensor

                        num_diff_pixels = (true_tensor != out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / true_tensor.shape[-1] / true_tensor.shape[-2]
                        # Tolerance : less than 6% of different pixels
                        self.assertLess(
                            ratio_diff_pixels,
                            0.06,
                            msg="{}\n{} vs \n{}".format(
                                ratio_diff_pixels, true_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                            )
                        )
            else:
                test_configs = [
                    90, 45, 15, -30, -60, -120
                ]
                for a in test_configs:
503
504
505
506
507
508

                    out_pil_img = F.affine(
                        pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                    )
                    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

509
                    for fn in [F.affine, scripted_affine]:
510
511
512
                        out_tensor = fn(
                            tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                        ).cpu()
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

                        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                        # Tolerance : less than 3% of different pixels
                        self.assertLess(
                            ratio_diff_pixels,
                            0.03,
                            msg="{}: {}\n{} vs \n{}".format(
                                a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                            )
                        )

            # 3) Test translation
            test_configs = [
                [10, 12], (-12, -13)
            ]
            for t in test_configs:
530
531
532

                out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)

vfdev's avatar
vfdev committed
533
                for fn in [F.affine, scripted_affine]:
534
                    out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
                    self.compareTensorToPIL(out_tensor, out_pil_img)

            # 3) Test rotation + translation + scale + share
            test_configs = [
                (45, [5, 6], 1.0, [0.0, 0.0]),
                (33, (5, -4), 1.0, [0.0, 0.0]),
                (45, [-5, 4], 1.2, [0.0, 0.0]),
                (33, (-4, -8), 2.0, [0.0, 0.0]),
                (85, (10, -10), 0.7, [0.0, 0.0]),
                (0, [0, 0], 1.0, [35.0, ]),
                (-25, [0, 0], 1.2, [0.0, 15.0]),
                (-45, [-10, 0], 0.7, [2.0, 5.0]),
                (-45, [-10, -10], 1.2, [4.0, 5.0]),
                (-90, [0, 0], 1.0, [0.0, 0.0]),
            ]
            for r in [0, ]:
                for a, t, s, sh in test_configs:
                    out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, resample=r)
                    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                    for fn in [F.affine, scripted_affine]:
557
                        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, resample=r).cpu()
558
559
                        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
560
561
                        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                        tol = 0.06 if device == "cuda" else 0.05
562
563
                        self.assertLess(
                            ratio_diff_pixels,
564
                            tol,
565
566
567
                            msg="{}: {}\n{} vs \n{}".format(
                                (r, a, t, s, sh), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                            )
vfdev's avatar
vfdev committed
568
569
                        )

570
571
572
573
574
575
576
577
    def test_affine_cpu(self):
        self._test_affine("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_affine_cuda(self):
        self._test_affine("cuda")

    def _test_rotate(self, device):
vfdev's avatar
vfdev committed
578
579
580
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

581
        for tensor, pil_img in [self._create_data(26, 26, device=device), self._create_data(32, 26, device=device)]:
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

            for r in [0, ]:
                for a in range(-180, 180, 17):
                    for e in [True, False]:
                        for c in centers:

                            out_pil_img = F.rotate(pil_img, angle=a, resample=r, expand=e, center=c)
                            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                            for fn in [F.rotate, scripted_rotate]:
598
                                out_tensor = fn(tensor, angle=a, resample=r, expand=e, center=c).cpu()
599
600
601
602
603
604
605

                                self.assertEqual(
                                    out_tensor.shape,
                                    out_pil_tensor.shape,
                                    msg="{}: {} vs {}".format(
                                        (img_size, r, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                    )
vfdev's avatar
vfdev committed
606
                                )
607
608
609
610
611
612
613
614
615
616
617
618
                                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                                # Tolerance : less than 2% of different pixels
                                self.assertLess(
                                    ratio_diff_pixels,
                                    0.02,
                                    msg="{}: {}\n{} vs \n{}".format(
                                        (img_size, r, a, e, c),
                                        ratio_diff_pixels,
                                        out_tensor[0, :7, :7],
                                        out_pil_tensor[0, :7, :7]
                                    )
vfdev's avatar
vfdev committed
619
620
                                )

621
622
623
624
625
626
627
628
    def test_rotate_cpu(self):
        self._test_rotate("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_rotate_cuda(self):
        self._test_rotate("cuda")

    def _test_perspective(self, device):
629
630
631

        from torchvision.transforms import RandomPerspective

632
        for tensor, pil_img in [self._create_data(26, 34, device=device), self._create_data(26, 26, device=device)]:
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

            scripted_tranform = torch.jit.script(F.perspective)

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1], i / n) for i in range(n)
            ]

            for r in [0, ]:
                for spoints, epoints in test_configs:
                    out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=r)
                    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                    for fn in [F.perspective, scripted_tranform]:
652
                        out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=r).cpu()
653
654
655

                        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
656
                        # Tolerance : less than 5% of different pixels
657
658
                        self.assertLess(
                            ratio_diff_pixels,
659
                            0.05,
660
661
662
663
664
665
666
667
                            msg="{}: {}\n{} vs \n{}".format(
                                (r, spoints, epoints),
                                ratio_diff_pixels,
                                out_tensor[0, :7, :7],
                                out_pil_tensor[0, :7, :7]
                            )
                        )

668
669
670
671
672
673
674
    def test_perspective_cpu(self):
        self._test_perspective("cpu")

    @unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
    def test_perspective_cuda(self):
        self._test_perspective("cuda")

675
676
677

if __name__ == '__main__':
    unittest.main()