test_functional_tensor.py 22.7 KB
Newer Older
1
import unittest
ekka's avatar
ekka committed
2
import random
3
import colorsys
4
import math
5
6

from PIL import Image
vfdev's avatar
vfdev committed
7
8
9
10
11
12
13
14
15
from PIL.Image import NEAREST, BILINEAR, BICUBIC

import numpy as np

import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
16
17
18
19


class Tester(unittest.TestCase):

20
21
22
23
24
25
26
    def _create_data(self, height=3, width=3, channels=3):
        tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8)
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().numpy())
        return tensor, pil_img

    def compareTensorToPIL(self, tensor, pil_image, msg=None):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1)))
27
28
        if msg is None:
            msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
29
30
        self.assertTrue(tensor.equal(pil_tensor), msg)

vfdev's avatar
vfdev committed
31
32
33
34
35
36
37
38
    def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1))).to(tensor)
        mae = torch.abs(tensor - pil_tensor).mean().item()
        self.assertTrue(
            mae < tol,
            msg="{}: mae={}, tol={}: \n{}\nvs\n{}".format(msg, mae, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
        )

39
    def test_vflip(self):
40
        script_vflip = torch.jit.script(F_t.vflip)
41
        img_tensor = torch.randn(3, 16, 16)
42
        img_tensor_clone = img_tensor.clone()
43
44
45
46
        vflipped_img = F_t.vflip(img_tensor)
        vflipped_img_again = F_t.vflip(vflipped_img)
        self.assertEqual(vflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, vflipped_img_again))
47
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
48
49
50
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
        self.assertTrue(torch.equal(vflipped_img, vflipped_img_script))
51
52

    def test_hflip(self):
53
        script_hflip = torch.jit.script(F_t.hflip)
54
        img_tensor = torch.randn(3, 16, 16)
55
        img_tensor_clone = img_tensor.clone()
56
57
58
59
        hflipped_img = F_t.hflip(img_tensor)
        hflipped_img_again = F_t.hflip(hflipped_img)
        self.assertEqual(hflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, hflipped_img_again))
60
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
61
62
63
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
        self.assertTrue(torch.equal(hflipped_img, hflipped_img_script))
64

ekka's avatar
ekka committed
65
    def test_crop(self):
66
        script_crop = torch.jit.script(F_t.crop)
ekka's avatar
ekka committed
67
        img_tensor = torch.randint(0, 255, (3, 16, 16), dtype=torch.uint8)
68
        img_tensor_clone = img_tensor.clone()
ekka's avatar
ekka committed
69
70
71
72
73
74
75
76
        top = random.randint(0, 15)
        left = random.randint(0, 15)
        height = random.randint(1, 16 - top)
        width = random.randint(1, 16 - left)
        img_cropped = F_t.crop(img_tensor, top, left, height, width)
        img_PIL = transforms.ToPILImage()(img_tensor)
        img_PIL_cropped = F.crop(img_PIL, top, left, height, width)
        img_cropped_GT = transforms.ToTensor()(img_PIL_cropped)
77
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
ekka's avatar
ekka committed
78
79
        self.assertTrue(torch.equal(img_cropped, (img_cropped_GT * 255).to(torch.uint8)),
                        "functional_tensor crop not working")
80
81
82
        # scriptable function test
        cropped_img_script = script_crop(img_tensor, top, left, height, width)
        self.assertTrue(torch.equal(img_cropped, cropped_img_script))
ekka's avatar
ekka committed
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_hsv2rgb(self):
        shape = (3, 100, 150)
        for _ in range(20):
            img = torch.rand(*shape, dtype=torch.float)
            ft_img = F_t._hsv2rgb(img).permute(1, 2, 0).flatten(0, 1)

            h, s, v, = img.unbind(0)
            h = h.flatten().numpy()
            s = s.flatten().numpy()
            v = v.flatten().numpy()

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))

            colorsys_img = torch.tensor(rgb, dtype=torch.float32)
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

    def test_rgb2hsv(self):
        shape = (3, 150, 100)
        for _ in range(20):
            img = torch.rand(*shape, dtype=torch.float)
            ft_hsv_img = F_t._rgb2hsv(img).permute(1, 2, 0).flatten(0, 1)

            r, g, b, = img.unbind(0)
            r = r.flatten().numpy()
            g = g.flatten().numpy()
            b = b.flatten().numpy()

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

            colorsys_img = torch.tensor(hsv, dtype=torch.float32)

120
121
122
123
124
125
126
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)

127
128
            self.assertLess(max_diff, 1e-5)

129
    def test_adjustments(self):
130
131
132
133
134
135
136
        script_adjust_brightness = torch.jit.script(F_t.adjust_brightness)
        script_adjust_contrast = torch.jit.script(F_t.adjust_contrast)
        script_adjust_saturation = torch.jit.script(F_t.adjust_saturation)

        fns = ((F.adjust_brightness, F_t.adjust_brightness, script_adjust_brightness),
               (F.adjust_contrast, F_t.adjust_contrast, script_adjust_contrast),
               (F.adjust_saturation, F_t.adjust_saturation, script_adjust_saturation))
137
138
139
140
141
142
143
144
145
146
147
148

        for _ in range(20):
            channels = 3
            dims = torch.randint(1, 50, (2,))
            shape = (channels, dims[0], dims[1])

            if torch.randint(0, 2, (1,)) == 0:
                img = torch.rand(*shape, dtype=torch.float)
            else:
                img = torch.randint(0, 256, shape, dtype=torch.uint8)

            factor = 3 * torch.rand(1)
149
            img_clone = img.clone()
150
            for f, ft, sft in fns:
151
152

                ft_img = ft(img, factor)
153
                sft_img = sft(img, factor)
154
155
                if not img.dtype.is_floating_point:
                    ft_img = ft_img.to(torch.float) / 255
156
                    sft_img = sft_img.to(torch.float) / 255
157
158
159
160
161
162
163
164

                img_pil = transforms.ToPILImage()(img)
                f_img_pil = f(img_pil, factor)
                f_img = transforms.ToTensor()(f_img_pil)

                # F uses uint8 and F_t uses float, so there is a small
                # difference in values caused by (at most 5) truncations.
                max_diff = (ft_img - f_img).abs().max()
165
                max_diff_scripted = (sft_img - f_img).abs().max()
166
                self.assertLess(max_diff, 5 / 255 + 1e-5)
167
                self.assertLess(max_diff_scripted, 5 / 255 + 1e-5)
168
                self.assertTrue(torch.equal(img, img_clone))
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
            # test for class interface
            f = transforms.ColorJitter(brightness=factor.item())
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

            f = transforms.ColorJitter(contrast=factor.item())
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

            f = transforms.ColorJitter(saturation=factor.item())
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

        f = transforms.ColorJitter(brightness=1)
        scripted_fn = torch.jit.script(f)
        scripted_fn(img)

187
    def test_rgb_to_grayscale(self):
188
        script_rgb_to_grayscale = torch.jit.script(F_t.rgb_to_grayscale)
189
        img_tensor = torch.randint(0, 255, (3, 16, 16), dtype=torch.uint8)
190
        img_tensor_clone = img_tensor.clone()
191
192
193
194
        grayscale_tensor = F_t.rgb_to_grayscale(img_tensor).to(int)
        grayscale_pil_img = torch.tensor(np.array(F.to_grayscale(F.to_pil_image(img_tensor)))).to(int)
        max_diff = (grayscale_tensor - grayscale_pil_img).abs().max()
        self.assertLess(max_diff, 1.0001)
195
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
196
197
198
        # scriptable function test
        grayscale_script = script_rgb_to_grayscale(img_tensor).to(int)
        self.assertTrue(torch.equal(grayscale_script, grayscale_tensor))
199

200
    def test_center_crop(self):
201
        script_center_crop = torch.jit.script(F_t.center_crop)
202
        img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
203
        img_tensor_clone = img_tensor.clone()
204
205
206
207
        cropped_tensor = F_t.center_crop(img_tensor, [10, 10])
        cropped_pil_image = F.center_crop(transforms.ToPILImage()(img_tensor), [10, 10])
        cropped_pil_tensor = (transforms.ToTensor()(cropped_pil_image) * 255).to(torch.uint8)
        self.assertTrue(torch.equal(cropped_tensor, cropped_pil_tensor))
208
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
209
210
211
        # scriptable function test
        cropped_script = script_center_crop(img_tensor, [10, 10])
        self.assertTrue(torch.equal(cropped_script, cropped_tensor))
212
213

    def test_five_crop(self):
214
        script_five_crop = torch.jit.script(F_t.five_crop)
215
        img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
216
        img_tensor_clone = img_tensor.clone()
217
218
219
220
221
222
223
224
225
226
227
228
        cropped_tensor = F_t.five_crop(img_tensor, [10, 10])
        cropped_pil_image = F.five_crop(transforms.ToPILImage()(img_tensor), [10, 10])
        self.assertTrue(torch.equal(cropped_tensor[0],
                                    (transforms.ToTensor()(cropped_pil_image[0]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[1],
                                    (transforms.ToTensor()(cropped_pil_image[2]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[2],
                                    (transforms.ToTensor()(cropped_pil_image[1]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[3],
                                    (transforms.ToTensor()(cropped_pil_image[3]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[4],
                                    (transforms.ToTensor()(cropped_pil_image[4]) * 255).to(torch.uint8)))
229
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
230
231
232
233
        # scriptable function test
        cropped_script = script_five_crop(img_tensor, [10, 10])
        for cropped_script_img, cropped_tensor_img in zip(cropped_script, cropped_tensor):
            self.assertTrue(torch.equal(cropped_script_img, cropped_tensor_img))
234
235

    def test_ten_crop(self):
236
        script_ten_crop = torch.jit.script(F_t.ten_crop)
237
        img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
238
        img_tensor_clone = img_tensor.clone()
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        cropped_tensor = F_t.ten_crop(img_tensor, [10, 10])
        cropped_pil_image = F.ten_crop(transforms.ToPILImage()(img_tensor), [10, 10])
        self.assertTrue(torch.equal(cropped_tensor[0],
                                    (transforms.ToTensor()(cropped_pil_image[0]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[1],
                                    (transforms.ToTensor()(cropped_pil_image[2]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[2],
                                    (transforms.ToTensor()(cropped_pil_image[1]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[3],
                                    (transforms.ToTensor()(cropped_pil_image[3]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[4],
                                    (transforms.ToTensor()(cropped_pil_image[4]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[5],
                                    (transforms.ToTensor()(cropped_pil_image[5]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[6],
                                    (transforms.ToTensor()(cropped_pil_image[7]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[7],
                                    (transforms.ToTensor()(cropped_pil_image[6]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[8],
                                    (transforms.ToTensor()(cropped_pil_image[8]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[9],
                                    (transforms.ToTensor()(cropped_pil_image[9]) * 255).to(torch.uint8)))
261
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
262
263
264
265
        # scriptable function test
        cropped_script = script_ten_crop(img_tensor, [10, 10])
        for cropped_script_img, cropped_tensor_img in zip(cropped_script, cropped_tensor):
            self.assertTrue(torch.equal(cropped_script_img, cropped_tensor_img))
266

267
268
269
    def test_pad(self):
        script_fn = torch.jit.script(F_t.pad)
        tensor, pil_img = self._create_data(7, 8)
270
271
272
273
274
275
276
277
278
279
280
281

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
282
                    {"padding_mode": "symmetric"},
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
301

302
303
304
        with self.assertRaises(ValueError, msg="Padding can not be negative for symmetric padding_mode"):
            F_t.pad(tensor, (-2, -3), padding_mode="symmetric")

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def test_adjust_gamma(self):
        script_fn = torch.jit.script(F_t.adjust_gamma)
        tensor, pil_img = self._create_data(26, 36)

        for dt in [torch.float64, torch.float32, None]:

            if dt is not None:
                tensor = F.convert_image_dtype(tensor, dt)

            gammas = [0.8, 1.0, 1.2]
            gains = [0.7, 1.0, 1.3]
            for gamma, gain in zip(gammas, gains):

                adjusted_tensor = F_t.adjust_gamma(tensor, gamma, gain)
                adjusted_pil = F_pil.adjust_gamma(pil_img, gamma, gain)
                scripted_result = script_fn(tensor, gamma, gain)
                self.assertEqual(adjusted_tensor.dtype, scripted_result.dtype)
                self.assertEqual(adjusted_tensor.size()[1:], adjusted_pil.size[::-1])

                rbg_tensor = adjusted_tensor
                if adjusted_tensor.dtype != torch.uint8:
                    rbg_tensor = F.convert_image_dtype(adjusted_tensor, torch.uint8)

                self.compareTensorToPIL(rbg_tensor, adjusted_pil)

                self.assertTrue(adjusted_tensor.equal(scripted_result))

vfdev's avatar
vfdev committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    def test_resize(self):
        script_fn = torch.jit.script(F_t.resize)
        tensor, pil_img = self._create_data(26, 36)

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
            for size in [32, [32, ], [32, 32], (32, 32), ]:
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
                    resized_tensor = F_t.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F_pil.resize(pil_img, size=size, interpolation=interpolation)

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

                    if interpolation != NEAREST:
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
367
368
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    def test_resized_crop(self):
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
        tensor, _ = self._create_data(26, 36)
        for i in [0, 2, 3]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=i)
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
        tensor, _ = self._create_data(26, 36)
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=0)
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

vfdev's avatar
vfdev committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    def test_affine(self):
        # Tests on square image
        tensor, pil_img = self._create_data(26, 26)

        scripted_affine = torch.jit.script(F.affine)
        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
        out_tensor = scripted_affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )

        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )
                else:
                    true_tensor = out_tensor

                out_pil_img = F.affine(pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                num_diff_pixels = (true_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / true_tensor.shape[-1] / true_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, true_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                    )
                )
        # 3) Test translation
        test_configs = [
            [10, 12], (12, 13)
        ]
        for t in test_configs:
            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
                out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
                self.compareTensorToPIL(out_tensor, out_pil_img)

        # 3) Test rotation + translation + scale + share
        test_configs = [
            (45, [5, 6], 1.0, [0.0, 0.0]),
            (33, (5, -4), 1.0, [0.0, 0.0]),
            (45, [5, 4], 1.2, [0.0, 0.0]),
            (33, (4, 8), 2.0, [0.0, 0.0]),
            (85, (10, -10), 0.7, [0.0, 0.0]),
            (0, [0, 0], 1.0, [35.0, ]),
            (25, [0, 0], 1.2, [0.0, 15.0]),
            (45, [10, 0], 0.7, [2.0, 5.0]),
            (45, [10, -10], 1.2, [4.0, 5.0]),
        ]
        for r in [0, ]:
            for a, t, s, sh in test_configs:
                for fn in [F.affine, scripted_affine]:
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, resample=r)
                    out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, resample=r)
                    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% of different pixels
                    self.assertLess(
                        ratio_diff_pixels,
                        0.05,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, a, t, s, sh), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                        )
                    )

476
477
478

if __name__ == '__main__':
    unittest.main()