_video_opt.py 19.9 KB
Newer Older
Francisco Massa's avatar
Francisco Massa committed
1
import math
2
3
import warnings
from fractions import Fraction
4
from typing import Dict, List, Optional, Tuple, Union
5

6
import torch
7

8
from ..extension import _load_library
9
10
11


try:
12
    _load_library("video_reader")
13
    _HAS_VIDEO_OPT = True
14
except (ImportError, OSError):
15
    _HAS_VIDEO_OPT = False
16
17
18
19

default_timebase = Fraction(0, 1)


20
21
# simple class for torch scripting
# the complex Fraction class from fractions module is not scriptable
22
class Timebase:
23
24
25
26
27
    __annotations__ = {"numerator": int, "denominator": int}
    __slots__ = ["numerator", "denominator"]

    def __init__(
        self,
28
29
30
        numerator: int,
        denominator: int,
    ) -> None:
31
32
33
34
        self.numerator = numerator
        self.denominator = denominator


35
class VideoMetaData:
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    __annotations__ = {
        "has_video": bool,
        "video_timebase": Timebase,
        "video_duration": float,
        "video_fps": float,
        "has_audio": bool,
        "audio_timebase": Timebase,
        "audio_duration": float,
        "audio_sample_rate": float,
    }
    __slots__ = [
        "has_video",
        "video_timebase",
        "video_duration",
        "video_fps",
        "has_audio",
        "audio_timebase",
        "audio_duration",
        "audio_sample_rate",
    ]

57
    def __init__(self) -> None:
58
59
60
61
62
63
64
65
66
67
        self.has_video = False
        self.video_timebase = Timebase(0, 1)
        self.video_duration = 0.0
        self.video_fps = 0.0
        self.has_audio = False
        self.audio_timebase = Timebase(0, 1)
        self.audio_duration = 0.0
        self.audio_sample_rate = 0.0


68
def _validate_pts(pts_range: Tuple[int, int]) -> None:
69

70
71
72
    if pts_range[0] > pts_range[1] > 0:
        raise ValueError(
            f"Start pts should not be smaller than end pts, got start pts: {pts_range[0]} and end pts: {pts_range[1]}"
73
        )
74
75


76
77
78
79
80
81
82
83
def _fill_info(
    vtimebase: torch.Tensor,
    vfps: torch.Tensor,
    vduration: torch.Tensor,
    atimebase: torch.Tensor,
    asample_rate: torch.Tensor,
    aduration: torch.Tensor,
) -> VideoMetaData:
84
85
86
87
    """
    Build update VideoMetaData struct with info about the video
    """
    meta = VideoMetaData()
88
    if vtimebase.numel() > 0:
89
        meta.video_timebase = Timebase(int(vtimebase[0].item()), int(vtimebase[1].item()))
90
        timebase = vtimebase[0].item() / float(vtimebase[1].item())
91
        if vduration.numel() > 0:
92
93
            meta.has_video = True
            meta.video_duration = float(vduration.item()) * timebase
94
    if vfps.numel() > 0:
95
        meta.video_fps = float(vfps.item())
96
    if atimebase.numel() > 0:
97
        meta.audio_timebase = Timebase(int(atimebase[0].item()), int(atimebase[1].item()))
98
        timebase = atimebase[0].item() / float(atimebase[1].item())
99
        if aduration.numel() > 0:
100
101
            meta.has_audio = True
            meta.audio_duration = float(aduration.item()) * timebase
102
    if asample_rate.numel() > 0:
103
        meta.audio_sample_rate = float(asample_rate.item())
104

105
    return meta
106
107


108
109
110
def _align_audio_frames(
    aframes: torch.Tensor, aframe_pts: torch.Tensor, audio_pts_range: Tuple[int, int]
) -> torch.Tensor:
111
112
113
114
115
116
117
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
118
    if audio_pts_range[1] != -1 and end > audio_pts_range[1]:
119
120
121
122
123
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    filename: str,
    seek_frame_margin: float = 0.25,
    read_video_stream: bool = True,
    video_width: int = 0,
    video_height: int = 0,
    video_min_dimension: int = 0,
    video_max_dimension: int = 0,
    video_pts_range: Tuple[int, int] = (0, -1),
    video_timebase: Fraction = default_timebase,
    read_audio_stream: bool = True,
    audio_samples: int = 0,
    audio_channels: int = 0,
    audio_pts_range: Tuple[int, int] = (0, -1),
    audio_timebase: Fraction = default_timebase,
) -> Tuple[torch.Tensor, torch.Tensor, VideoMetaData]:
139
140
141
142
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    Args:
    filename (str): path to the video file
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise. Thus,
        when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase (Fraction, optional): a Fraction rational number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase (Fraction, optional): a Fraction rational number which denotes time base in audio stream
180
181

    Returns
182
183
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
184
            `K` is the number of audio_channels
185
186
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float)
            and audio_fps (int)
187
188
189
190
191
192
193
194
195
196
197
198
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
199
        video_max_dimension,
200
201
202
203
204
205
206
207
208
209
210
211
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
212
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result
213
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
214
215
216
217
218
219
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


220
def _read_video_timestamps_from_file(filename: str) -> Tuple[List[int], List[int], VideoMetaData]:
221
222
223
224
225
226
227
228
229
230
231
232
233
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
234
        0,  # video_max_dimension
235
236
237
238
239
240
241
242
243
244
245
246
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
247
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result
248
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
249
250
251
252
253
254

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


255
def _probe_video_from_file(filename: str) -> VideoMetaData:
256
    """
257
    Probe a video file and return VideoMetaData with info about the video
258
259
260
261
262
263
264
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


265
def _read_video_from_memory(
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    video_data: torch.Tensor,
    seek_frame_margin: float = 0.25,
    read_video_stream: int = 1,
    video_width: int = 0,
    video_height: int = 0,
    video_min_dimension: int = 0,
    video_max_dimension: int = 0,
    video_pts_range: Tuple[int, int] = (0, -1),
    video_timebase_numerator: int = 0,
    video_timebase_denominator: int = 1,
    read_audio_stream: int = 1,
    audio_samples: int = 0,
    audio_channels: int = 0,
    audio_pts_range: Tuple[int, int] = (0, -1),
    audio_timebase_numerator: int = 0,
    audio_timebase_denominator: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
283
284
285
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames
286
    This function is torchscriptable.
287

288
289
    Args:
    video_data (data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes):
290
        compressed video content stored in either 1) torch.Tensor 2) python bytes
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise.
        Thus, when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase_numerator / video_timebase_denominator (float, optional): a rational
        number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio audio_channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase_numerator / audio_timebase_denominator (float, optional):
327
        a rational number which denotes time base in audio stream
328

329
330
331
    Returns:
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
332
333
334
335
336
337
            `K` is the number of channels
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

338
    if not isinstance(video_data, torch.Tensor):
339
340
341
342
        with warnings.catch_warnings():
            # Ignore the warning because we actually dont modify the buffer in this function
            warnings.filterwarnings("ignore", message="The given buffer is not writable")
            video_data = torch.frombuffer(video_data, dtype=torch.uint8)
343

344
    result = torch.ops.video_reader.read_video_from_memory(
345
        video_data,
346
347
348
349
350
351
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
352
        video_max_dimension,
353
354
        video_pts_range[0],
        video_pts_range[1],
355
356
        video_timebase_numerator,
        video_timebase_denominator,
357
358
359
360
361
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
362
363
        audio_timebase_numerator,
        audio_timebase_denominator,
364
365
    )

366
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result
367

368
369
370
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
371
372

    return vframes, aframes
373
374


375
376
377
def _read_video_timestamps_from_memory(
    video_data: torch.Tensor,
) -> Tuple[List[int], List[int], VideoMetaData]:
378
379
380
381
382
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """
383
    if not isinstance(video_data, torch.Tensor):
384
385
386
387
        with warnings.catch_warnings():
            # Ignore the warning because we actually dont modify the buffer in this function
            warnings.filterwarnings("ignore", message="The given buffer is not writable")
            video_data = torch.frombuffer(video_data, dtype=torch.uint8)
388
    result = torch.ops.video_reader.read_video_from_memory(
389
        video_data,
390
391
392
393
394
395
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
396
        0,  # video_max_dimension
397
398
399
400
401
402
403
404
405
406
407
408
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
409
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result
410
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
411
412
413
414

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info
415
416


417
418
419
def _probe_video_from_memory(
    video_data: torch.Tensor,
) -> VideoMetaData:
420
    """
421
422
    Probe a video in memory and return VideoMetaData with info about the video
    This function is torchscriptable
423
424
    """
    if not isinstance(video_data, torch.Tensor):
425
426
427
428
        with warnings.catch_warnings():
            # Ignore the warning because we actually dont modify the buffer in this function
            warnings.filterwarnings("ignore", message="The given buffer is not writable")
            video_data = torch.frombuffer(video_data, dtype=torch.uint8)
429
430
431
432
    result = torch.ops.video_reader.probe_video_from_memory(video_data)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info
Francisco Massa's avatar
Francisco Massa committed
433
434


435
436
437
438
439
440
def _read_video(
    filename: str,
    start_pts: Union[float, Fraction] = 0,
    end_pts: Optional[Union[float, Fraction]] = None,
    pts_unit: str = "pts",
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, float]]:
Francisco Massa's avatar
Francisco Massa committed
441
442
443
    if end_pts is None:
        end_pts = float("inf")

444
445
446
447
448
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
449
450
451

    info = _probe_video_from_file(filename)

452
453
    has_video = info.has_video
    has_audio = info.has_audio
Francisco Massa's avatar
Francisco Massa committed
454
455

    def get_pts(time_base):
Prabhat Roy's avatar
Prabhat Roy committed
456
457
        start_offset = start_pts
        end_offset = end_pts
458
        if pts_unit == "sec":
Prabhat Roy's avatar
Prabhat Roy committed
459
            start_offset = int(math.floor(start_pts * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
460
            if end_offset != float("inf"):
Prabhat Roy's avatar
Prabhat Roy committed
461
                end_offset = int(math.ceil(end_pts * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
462
463
464
465
        if end_offset == float("inf"):
            end_offset = -1
        return start_offset, end_offset

Prabhat Roy's avatar
Prabhat Roy committed
466
467
    video_pts_range = (0, -1)
    video_timebase = default_timebase
Francisco Massa's avatar
Francisco Massa committed
468
    if has_video:
Prabhat Roy's avatar
Prabhat Roy committed
469
        video_timebase = Fraction(info.video_timebase.numerator, info.video_timebase.denominator)
Francisco Massa's avatar
Francisco Massa committed
470
471
        video_pts_range = get_pts(video_timebase)

Prabhat Roy's avatar
Prabhat Roy committed
472
473
    audio_pts_range = (0, -1)
    audio_timebase = default_timebase
Francisco Massa's avatar
Francisco Massa committed
474
    if has_audio:
Prabhat Roy's avatar
Prabhat Roy committed
475
        audio_timebase = Fraction(info.audio_timebase.numerator, info.audio_timebase.denominator)
Francisco Massa's avatar
Francisco Massa committed
476
477
        audio_pts_range = get_pts(audio_timebase)

478
    vframes, aframes, info = _read_video_from_file(
Francisco Massa's avatar
Francisco Massa committed
479
480
481
482
483
484
485
486
        filename,
        read_video_stream=True,
        video_pts_range=video_pts_range,
        video_timebase=video_timebase,
        read_audio_stream=True,
        audio_pts_range=audio_pts_range,
        audio_timebase=audio_timebase,
    )
487
488
    _info = {}
    if has_video:
489
        _info["video_fps"] = info.video_fps
490
    if has_audio:
491
        _info["audio_fps"] = info.audio_sample_rate
492
493

    return vframes, aframes, _info
Francisco Massa's avatar
Francisco Massa committed
494
495


496
497
498
def _read_video_timestamps(
    filename: str, pts_unit: str = "pts"
) -> Tuple[Union[List[int], List[Fraction]], Optional[float]]:
499
500
501
502
503
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
504

505
    pts: Union[List[int], List[Fraction]]
Francisco Massa's avatar
Francisco Massa committed
506
507
    pts, _, info = _read_video_timestamps_from_file(filename)

508
    if pts_unit == "sec":
509
        video_time_base = Fraction(info.video_timebase.numerator, info.video_timebase.denominator)
Francisco Massa's avatar
Francisco Massa committed
510
511
        pts = [x * video_time_base for x in pts]

512
    video_fps = info.video_fps if info.has_video else None
Francisco Massa's avatar
Francisco Massa committed
513
514

    return pts, video_fps