_video_opt.py 19.3 KB
Newer Older
Francisco Massa's avatar
Francisco Massa committed
1
import math
2
3
import warnings
from fractions import Fraction
4
from typing import Dict, List, Optional, Tuple, Union
5

6
import torch
7

8
from ..extension import _load_library
9
10
11


try:
12
    _load_library("video_reader")
13
    _HAS_VIDEO_OPT = True
14
except (ImportError, OSError):
15
    _HAS_VIDEO_OPT = False
16
17
18
19

default_timebase = Fraction(0, 1)


20
21
# simple class for torch scripting
# the complex Fraction class from fractions module is not scriptable
22
class Timebase:
23
24
25
26
27
    __annotations__ = {"numerator": int, "denominator": int}
    __slots__ = ["numerator", "denominator"]

    def __init__(
        self,
28
29
30
        numerator: int,
        denominator: int,
    ) -> None:
31
32
33
34
        self.numerator = numerator
        self.denominator = denominator


35
class VideoMetaData:
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    __annotations__ = {
        "has_video": bool,
        "video_timebase": Timebase,
        "video_duration": float,
        "video_fps": float,
        "has_audio": bool,
        "audio_timebase": Timebase,
        "audio_duration": float,
        "audio_sample_rate": float,
    }
    __slots__ = [
        "has_video",
        "video_timebase",
        "video_duration",
        "video_fps",
        "has_audio",
        "audio_timebase",
        "audio_duration",
        "audio_sample_rate",
    ]

57
    def __init__(self) -> None:
58
59
60
61
62
63
64
65
66
67
        self.has_video = False
        self.video_timebase = Timebase(0, 1)
        self.video_duration = 0.0
        self.video_fps = 0.0
        self.has_audio = False
        self.audio_timebase = Timebase(0, 1)
        self.audio_duration = 0.0
        self.audio_sample_rate = 0.0


68
def _validate_pts(pts_range: Tuple[int, int]) -> None:
69

70
71
72
    if pts_range[0] > pts_range[1] > 0:
        raise ValueError(
            f"Start pts should not be smaller than end pts, got start pts: {pts_range[0]} and end pts: {pts_range[1]}"
73
        )
74
75


76
77
78
79
80
81
82
83
def _fill_info(
    vtimebase: torch.Tensor,
    vfps: torch.Tensor,
    vduration: torch.Tensor,
    atimebase: torch.Tensor,
    asample_rate: torch.Tensor,
    aduration: torch.Tensor,
) -> VideoMetaData:
84
85
86
87
    """
    Build update VideoMetaData struct with info about the video
    """
    meta = VideoMetaData()
88
    if vtimebase.numel() > 0:
89
        meta.video_timebase = Timebase(int(vtimebase[0].item()), int(vtimebase[1].item()))
90
        timebase = vtimebase[0].item() / float(vtimebase[1].item())
91
        if vduration.numel() > 0:
92
93
            meta.has_video = True
            meta.video_duration = float(vduration.item()) * timebase
94
    if vfps.numel() > 0:
95
        meta.video_fps = float(vfps.item())
96
    if atimebase.numel() > 0:
97
        meta.audio_timebase = Timebase(int(atimebase[0].item()), int(atimebase[1].item()))
98
        timebase = atimebase[0].item() / float(atimebase[1].item())
99
        if aduration.numel() > 0:
100
101
            meta.has_audio = True
            meta.audio_duration = float(aduration.item()) * timebase
102
    if asample_rate.numel() > 0:
103
        meta.audio_sample_rate = float(asample_rate.item())
104

105
    return meta
106
107


108
109
110
def _align_audio_frames(
    aframes: torch.Tensor, aframe_pts: torch.Tensor, audio_pts_range: Tuple[int, int]
) -> torch.Tensor:
111
112
113
114
115
116
117
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
118
    if audio_pts_range[1] != -1 and end > audio_pts_range[1]:
119
120
121
122
123
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    filename: str,
    seek_frame_margin: float = 0.25,
    read_video_stream: bool = True,
    video_width: int = 0,
    video_height: int = 0,
    video_min_dimension: int = 0,
    video_max_dimension: int = 0,
    video_pts_range: Tuple[int, int] = (0, -1),
    video_timebase: Fraction = default_timebase,
    read_audio_stream: bool = True,
    audio_samples: int = 0,
    audio_channels: int = 0,
    audio_pts_range: Tuple[int, int] = (0, -1),
    audio_timebase: Fraction = default_timebase,
) -> Tuple[torch.Tensor, torch.Tensor, VideoMetaData]:
139
140
141
142
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    Args:
    filename (str): path to the video file
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise. Thus,
        when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase (Fraction, optional): a Fraction rational number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase (Fraction, optional): a Fraction rational number which denotes time base in audio stream
180
181

    Returns
182
183
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
184
            `K` is the number of audio_channels
185
186
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float)
            and audio_fps (int)
187
188
189
190
191
192
193
194
195
196
197
198
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
199
        video_max_dimension,
200
201
202
203
204
205
206
207
208
209
210
211
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
212
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result
213
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
214
215
216
217
218
219
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


220
def _read_video_timestamps_from_file(filename: str) -> Tuple[List[int], List[int], VideoMetaData]:
221
222
223
224
225
226
227
228
229
230
231
232
233
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
234
        0,  # video_max_dimension
235
236
237
238
239
240
241
242
243
244
245
246
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
247
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result
248
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
249
250
251
252
253
254

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


255
def _probe_video_from_file(filename: str) -> VideoMetaData:
256
    """
257
    Probe a video file and return VideoMetaData with info about the video
258
259
260
261
262
263
264
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


265
def _read_video_from_memory(
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    video_data: torch.Tensor,
    seek_frame_margin: float = 0.25,
    read_video_stream: int = 1,
    video_width: int = 0,
    video_height: int = 0,
    video_min_dimension: int = 0,
    video_max_dimension: int = 0,
    video_pts_range: Tuple[int, int] = (0, -1),
    video_timebase_numerator: int = 0,
    video_timebase_denominator: int = 1,
    read_audio_stream: int = 1,
    audio_samples: int = 0,
    audio_channels: int = 0,
    audio_pts_range: Tuple[int, int] = (0, -1),
    audio_timebase_numerator: int = 0,
    audio_timebase_denominator: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
283
284
285
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames
286
    This function is torchscriptable.
287

288
289
    Args:
    video_data (data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes):
290
        compressed video content stored in either 1) torch.Tensor 2) python bytes
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise.
        Thus, when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase_numerator / video_timebase_denominator (float, optional): a rational
        number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio audio_channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase_numerator / audio_timebase_denominator (float, optional):
327
        a rational number which denotes time base in audio stream
328

329
330
331
    Returns:
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
332
333
334
335
336
337
            `K` is the number of channels
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

338
    if not isinstance(video_data, torch.Tensor):
339
        video_data = torch.frombuffer(video_data, dtype=torch.uint8)
340

341
    result = torch.ops.video_reader.read_video_from_memory(
342
        video_data,
343
344
345
346
347
348
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
349
        video_max_dimension,
350
351
        video_pts_range[0],
        video_pts_range[1],
352
353
        video_timebase_numerator,
        video_timebase_denominator,
354
355
356
357
358
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
359
360
        audio_timebase_numerator,
        audio_timebase_denominator,
361
362
    )

363
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result
364

365
366
367
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
368
369

    return vframes, aframes
370
371


372
373
374
def _read_video_timestamps_from_memory(
    video_data: torch.Tensor,
) -> Tuple[List[int], List[int], VideoMetaData]:
375
376
377
378
379
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """
380
    if not isinstance(video_data, torch.Tensor):
381
        video_data = torch.frombuffer(video_data, dtype=torch.uint8)
382
    result = torch.ops.video_reader.read_video_from_memory(
383
        video_data,
384
385
386
387
388
389
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
390
        0,  # video_max_dimension
391
392
393
394
395
396
397
398
399
400
401
402
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
403
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result
404
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
405
406
407
408

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info
409
410


411
412
413
def _probe_video_from_memory(
    video_data: torch.Tensor,
) -> VideoMetaData:
414
    """
415
416
    Probe a video in memory and return VideoMetaData with info about the video
    This function is torchscriptable
417
418
    """
    if not isinstance(video_data, torch.Tensor):
419
        video_data = torch.frombuffer(video_data, dtype=torch.uint8)
420
421
422
423
    result = torch.ops.video_reader.probe_video_from_memory(video_data)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info
Francisco Massa's avatar
Francisco Massa committed
424
425


426
427
428
429
430
431
def _read_video(
    filename: str,
    start_pts: Union[float, Fraction] = 0,
    end_pts: Optional[Union[float, Fraction]] = None,
    pts_unit: str = "pts",
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, float]]:
Francisco Massa's avatar
Francisco Massa committed
432
433
434
    if end_pts is None:
        end_pts = float("inf")

435
436
437
438
439
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
440
441
442

    info = _probe_video_from_file(filename)

443
444
    has_video = info.has_video
    has_audio = info.has_audio
Francisco Massa's avatar
Francisco Massa committed
445
446

    def get_pts(time_base):
Prabhat Roy's avatar
Prabhat Roy committed
447
448
        start_offset = start_pts
        end_offset = end_pts
449
        if pts_unit == "sec":
Prabhat Roy's avatar
Prabhat Roy committed
450
            start_offset = int(math.floor(start_pts * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
451
            if end_offset != float("inf"):
Prabhat Roy's avatar
Prabhat Roy committed
452
                end_offset = int(math.ceil(end_pts * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
453
454
455
456
        if end_offset == float("inf"):
            end_offset = -1
        return start_offset, end_offset

Prabhat Roy's avatar
Prabhat Roy committed
457
458
    video_pts_range = (0, -1)
    video_timebase = default_timebase
Francisco Massa's avatar
Francisco Massa committed
459
    if has_video:
Prabhat Roy's avatar
Prabhat Roy committed
460
        video_timebase = Fraction(info.video_timebase.numerator, info.video_timebase.denominator)
Francisco Massa's avatar
Francisco Massa committed
461
462
        video_pts_range = get_pts(video_timebase)

Prabhat Roy's avatar
Prabhat Roy committed
463
464
    audio_pts_range = (0, -1)
    audio_timebase = default_timebase
Francisco Massa's avatar
Francisco Massa committed
465
    if has_audio:
Prabhat Roy's avatar
Prabhat Roy committed
466
        audio_timebase = Fraction(info.audio_timebase.numerator, info.audio_timebase.denominator)
Francisco Massa's avatar
Francisco Massa committed
467
468
        audio_pts_range = get_pts(audio_timebase)

469
    vframes, aframes, info = _read_video_from_file(
Francisco Massa's avatar
Francisco Massa committed
470
471
472
473
474
475
476
477
        filename,
        read_video_stream=True,
        video_pts_range=video_pts_range,
        video_timebase=video_timebase,
        read_audio_stream=True,
        audio_pts_range=audio_pts_range,
        audio_timebase=audio_timebase,
    )
478
479
    _info = {}
    if has_video:
480
        _info["video_fps"] = info.video_fps
481
    if has_audio:
482
        _info["audio_fps"] = info.audio_sample_rate
483
484

    return vframes, aframes, _info
Francisco Massa's avatar
Francisco Massa committed
485
486


487
488
489
def _read_video_timestamps(
    filename: str, pts_unit: str = "pts"
) -> Tuple[Union[List[int], List[Fraction]], Optional[float]]:
490
491
492
493
494
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
495

496
    pts: Union[List[int], List[Fraction]]
Francisco Massa's avatar
Francisco Massa committed
497
498
    pts, _, info = _read_video_timestamps_from_file(filename)

499
    if pts_unit == "sec":
500
        video_time_base = Fraction(info.video_timebase.numerator, info.video_timebase.denominator)
Francisco Massa's avatar
Francisco Massa committed
501
502
        pts = [x * video_time_base for x in pts]

503
    video_fps = info.video_fps if info.has_video else None
Francisco Massa's avatar
Francisco Massa committed
504
505

    return pts, video_fps