models.rst 27.5 KB
Newer Older
1
2
.. _models:

3
4
Models and pre-trained weights
##############################
5
6


7
The ``torchvision.models`` subpackage contains definitions of models for addressing
8
different tasks, including: image classification, pixelwise semantic
9
segmentation, object detection, instance segmentation, person
10
keypoint detection, video classification, and optical flow.
11

12
13
.. note ::
    Backward compatibility is guaranteed for loading a serialized 
14
    ``state_dict`` to the model created using old PyTorch version. 
15
    On the contrary, loading entire saved models or serialized 
16
17
    ``ScriptModules`` (seralized using older versions of PyTorch) 
    may not preserve the historic behaviour. Refer to the following 
18
19
20
    `documentation 
    <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_   

21
22
23

Classification
==============
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
24

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
25
The models subpackage contains definitions for the following model
26
architectures for image classification:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
27
28
29
30
31
32
33

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3
34
-  `GoogLeNet`_
Bar's avatar
Bar committed
35
-  `ShuffleNet`_ v2
36
37
-  `MobileNetV2`_
-  `MobileNetV3`_
38
-  `ResNeXt`_
39
-  `Wide ResNet`_
40
-  `MNASNet`_
41
-  `EfficientNet`_ v1 & v2
42
-  `RegNet`_
43
-  `VisionTransformer`_
44
-  `ConvNeXt`_
45
-  `SwinTransformer`_
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
46
47
48
49
50
51
52
53
54
55

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
56
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
57
    inception = models.inception_v3()
58
    googlenet = models.googlenet()
59
    shufflenet = models.shufflenet_v2_x1_0()
60
61
62
    mobilenet_v2 = models.mobilenet_v2()
    mobilenet_v3_large = models.mobilenet_v3_large()
    mobilenet_v3_small = models.mobilenet_v3_small()
63
    resnext50_32x4d = models.resnext50_32x4d()
64
65
    resnext101_32x8d = models.resnext101_32x8d()
    resnext101_64x4d = models.resnext101_64x4d()
66
    wide_resnet50_2 = models.wide_resnet50_2()
67
    mnasnet = models.mnasnet1_0()
68
69
70
71
72
73
74
75
    efficientnet_b0 = models.efficientnet_b0()
    efficientnet_b1 = models.efficientnet_b1()
    efficientnet_b2 = models.efficientnet_b2()
    efficientnet_b3 = models.efficientnet_b3()
    efficientnet_b4 = models.efficientnet_b4()
    efficientnet_b5 = models.efficientnet_b5()
    efficientnet_b6 = models.efficientnet_b6()
    efficientnet_b7 = models.efficientnet_b7()
76
77
78
    efficientnet_v2_s = models.efficientnet_v2_s()
    efficientnet_v2_m = models.efficientnet_v2_m()
    efficientnet_v2_l = models.efficientnet_v2_l()
79
80
81
82
83
84
85
    regnet_y_400mf = models.regnet_y_400mf()
    regnet_y_800mf = models.regnet_y_800mf()
    regnet_y_1_6gf = models.regnet_y_1_6gf()
    regnet_y_3_2gf = models.regnet_y_3_2gf()
    regnet_y_8gf = models.regnet_y_8gf()
    regnet_y_16gf = models.regnet_y_16gf()
    regnet_y_32gf = models.regnet_y_32gf()
86
    regnet_y_128gf = models.regnet_y_128gf()
87
88
89
90
91
92
93
    regnet_x_400mf = models.regnet_x_400mf()
    regnet_x_800mf = models.regnet_x_800mf()
    regnet_x_1_6gf = models.regnet_x_1_6gf()
    regnet_x_3_2gf = models.regnet_x_3_2gf()
    regnet_x_8gf = models.regnet_x_8gf()
    regnet_x_16gf = models.regnet_x_16gf()
    regnet_x_32gf = models.regnet_x_32gf()
94
95
96
97
    vit_b_16 = models.vit_b_16()
    vit_b_32 = models.vit_b_32()
    vit_l_16 = models.vit_l_16()
    vit_l_32 = models.vit_l_32()
98
    vit_h_14 = models.vit_h_14()
99
100
101
102
    convnext_tiny = models.convnext_tiny()
    convnext_small = models.convnext_small()
    convnext_base = models.convnext_base()
    convnext_large = models.convnext_large()
103
    swin_t = models.swin_t()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
104
105
106

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.

107
Instancing a pre-trained model will download its weights to a cache directory.
108
109
This directory can be set using the `TORCH_HOME` environment variable. See
:func:`torch.hub.load_state_dict_from_url` for details.
110

111
112
113
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
114
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
115

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
116
117
118
119
120
121
122
123
124
125
126
127
128
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

129
130
131
132
133
134
The process for obtaining the values of `mean` and `std` is roughly equivalent
to::

    import torch
    from torchvision import datasets, transforms as T

135
    transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.PILToTensor(), T.ConvertImageDtype(torch.float)])
136
137
138
139
140
141
142
143
144
145
146
    dataset = datasets.ImageNet(".", split="train", transform=transform)

    means = []
    stds = []
    for img in subset(dataset):
        means.append(torch.mean(img))
        stds.append(torch.std(img))

    mean = torch.mean(torch.tensor(means))
    std = torch.mean(torch.tensor(stds))

147
Unfortunately, the concrete `subset` that was used is lost. For more
148
149
150
information see `this discussion <https://github.com/pytorch/vision/issues/1439>`_
or `these experiments <https://github.com/pytorch/vision/pull/1965>`_.

151
152
153
154
The sizes of the EfficientNet models depend on the variant. For the exact input sizes
`check here <https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/train.py#L92-L93>`_

ImageNet 1-crop error rates
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
155
156

================================  =============   =============
157
Model                             Acc@1           Acc@5
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
158
================================  =============   =============
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
AlexNet                           56.522          79.066
VGG-11                            69.020          88.628
VGG-13                            69.928          89.246
VGG-16                            71.592          90.382
VGG-19                            72.376          90.876
VGG-11 with batch normalization   70.370          89.810
VGG-13 with batch normalization   71.586          90.374
VGG-16 with batch normalization   73.360          91.516
VGG-19 with batch normalization   74.218          91.842
ResNet-18                         69.758          89.078
ResNet-34                         73.314          91.420
ResNet-50                         76.130          92.862
ResNet-101                        77.374          93.546
ResNet-152                        78.312          94.046
SqueezeNet 1.0                    58.092          80.420
SqueezeNet 1.1                    58.178          80.624
Densenet-121                      74.434          91.972
Densenet-169                      75.600          92.806
Densenet-201                      76.896          93.370
Densenet-161                      77.138          93.560
Inception v3                      77.294          93.450
GoogleNet                         69.778          89.530
ShuffleNet V2 x0.5                60.552          81.746
182
183
184
ShuffleNet V2 x1.0                69.362          88.316
ShuffleNet V2 x1.5                72.996          91.086
ShuffleNet V2 x2.0                76.230          93.006
185
186
MobileNet V2                      71.878          90.286
MobileNet V3 Large                74.042          91.340
187
MobileNet V3 Small                67.668          87.402
188
189
ResNeXt-50-32x4d                  77.618          93.698
ResNeXt-101-32x8d                 79.312          94.526
190
ResNeXt-101-64x4d                 83.246          96.454
191
192
193
194
Wide ResNet-50-2                  78.468          94.086
Wide ResNet-101-2                 78.848          94.284
MNASNet 1.0                       73.456          91.510
MNASNet 0.5                       67.734          87.490
195
196
197
198
199
200
201
202
EfficientNet-B0                   77.692          93.532
EfficientNet-B1                   78.642          94.186
EfficientNet-B2                   80.608          95.310
EfficientNet-B3                   82.008          96.054
EfficientNet-B4                   83.384          96.594
EfficientNet-B5                   83.444          96.628
EfficientNet-B6                   84.008          96.916
EfficientNet-B7                   84.122          96.908
203
204
205
EfficientNetV2-s                  84.228          96.878
EfficientNetV2-m                  85.112          97.156
EfficientNetV2-l                  85.810          97.792
206
207
208
209
210
211
212
213
regnet_x_400mf                    72.834          90.950
regnet_x_800mf                    75.212          92.348
regnet_x_1_6gf                    77.040          93.440
regnet_x_3_2gf                    78.364          93.992
regnet_x_8gf                      79.344          94.686 
regnet_x_16gf                     80.058          94.944
regnet_x_32gf                     80.622          95.248
regnet_y_400mf                    74.046          91.716
214
regnet_y_800mf                    76.420          93.136
215
216
217
218
219
regnet_y_1_6gf                    77.950          93.966
regnet_y_3_2gf                    78.948          94.576
regnet_y_8gf                      80.032          95.048
regnet_y_16gf                     80.424          95.240
regnet_y_32gf                     80.878          95.340
220
221
222
223
vit_b_16                          81.072          95.318
vit_b_32                          75.912          92.466
vit_l_16                          79.662          94.638
vit_l_32                          76.972          93.070
224
vit_h_14                          88.552          98.694 
225
226
227
228
convnext_tiny                     82.520          96.146
convnext_small                    83.616          96.650
convnext_base                     84.062          96.870
convnext_large                    84.414          96.976
229
swin_t                            81.358          95.526
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
230
231
232
233
234
235
236
237
238
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
239
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
Bar's avatar
Bar committed
240
.. _ShuffleNet: https://arxiv.org/abs/1807.11164
241
242
.. _MobileNetV2: https://arxiv.org/abs/1801.04381
.. _MobileNetV3: https://arxiv.org/abs/1905.02244
243
.. _ResNeXt: https://arxiv.org/abs/1611.05431
244
.. _MNASNet: https://arxiv.org/abs/1807.11626
245
.. _EfficientNet: https://arxiv.org/abs/1905.11946
246
.. _RegNet: https://arxiv.org/abs/2003.13678
247
.. _VisionTransformer: https://arxiv.org/abs/2010.11929
248
.. _ConvNeXt: https://arxiv.org/abs/2201.03545
249
.. _SwinTransformer: https://arxiv.org/abs/2103.14030
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
250
251
252

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
253
254
255
Alexnet
-------

256
257
258
259
260
.. autosummary::
    :toctree: generated/
    :template: function.rst

    alexnet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
261
262
263
264

VGG
---

265
266
267
268
269
270
271
272
273
274
275
276
.. autosummary::
    :toctree: generated/
    :template: function.rst

    vgg11
    vgg11_bn
    vgg13
    vgg13_bn
    vgg16
    vgg16_bn
    vgg19
    vgg19_bn
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
277
278
279
280
281


ResNet
------

282
283
284
285
286
287
288
289
290
.. autosummary::
    :toctree: generated/
    :template: function.rst

    resnet18
    resnet34
    resnet50
    resnet101
    resnet152
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
291
292
293
294

SqueezeNet
----------

295
296
297
298
299
300
.. autosummary::
    :toctree: generated/
    :template: function.rst

    squeezenet1_0
    squeezenet1_1
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
301

Sangwhan Moon's avatar
Sangwhan Moon committed
302
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
303
304
---------

305
306
307
308
309
310
311
312
.. autosummary::
    :toctree: generated/
    :template: function.rst

    densenet121
    densenet169
    densenet161
    densenet201
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
313
314
315
316

Inception v3
------------

317
318
319
320
321
.. autosummary::
    :toctree: generated/
    :template: function.rst

    inception_v3
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
322

323
324
325
GoogLeNet
------------

326
327
328
329
330
.. autosummary::
    :toctree: generated/
    :template: function.rst

    googlenet
331

Bar's avatar
Bar committed
332
333
334
ShuffleNet v2
-------------

335
336
337
338
339
340
341
342
.. autosummary::
    :toctree: generated/
    :template: function.rst

    shufflenet_v2_x0_5
    shufflenet_v2_x1_0
    shufflenet_v2_x1_5
    shufflenet_v2_x2_0
Bar's avatar
Bar committed
343

344
345
346
MobileNet v2
-------------

347
348
349
350
351
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mobilenet_v2
352

353
354
355
MobileNet v3
-------------

356
357
358
359
360
361
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mobilenet_v3_large
    mobilenet_v3_small
362

363
ResNext
364
-------
365

366
367
368
369
370
371
.. autosummary::
    :toctree: generated/
    :template: function.rst

    resnext50_32x4d
    resnext101_32x8d
372
    resnext101_64x4d
373

374
375
376
Wide ResNet
-----------

377
378
379
380
381
382
.. autosummary::
    :toctree: generated/
    :template: function.rst

    wide_resnet50_2
    wide_resnet101_2
383

384
385
386
MNASNet
--------

387
388
389
390
391
392
393
394
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mnasnet0_5
    mnasnet0_75
    mnasnet1_0
    mnasnet1_3
395

396
397
398
EfficientNet
------------

399
400
401
402
403
404
405
406
407
408
409
410
.. autosummary::
    :toctree: generated/
    :template: function.rst

    efficientnet_b0
    efficientnet_b1
    efficientnet_b2
    efficientnet_b3
    efficientnet_b4
    efficientnet_b5
    efficientnet_b6
    efficientnet_b7
411
412
413
    efficientnet_v2_s
    efficientnet_v2_m
    efficientnet_v2_l
414

415
416
417
RegNet
------------

418
419
420
421
422
423
424
425
426
427
428
.. autosummary::
    :toctree: generated/
    :template: function.rst

    regnet_y_400mf
    regnet_y_800mf
    regnet_y_1_6gf
    regnet_y_3_2gf
    regnet_y_8gf
    regnet_y_16gf
    regnet_y_32gf
429
    regnet_y_128gf
430
431
432
433
434
435
436
    regnet_x_400mf
    regnet_x_800mf
    regnet_x_1_6gf
    regnet_x_3_2gf
    regnet_x_8gf
    regnet_x_16gf
    regnet_x_32gf
437

438
439
440
441
442
443
444
445
446
447
448
VisionTransformer
-----------------

.. autosummary::
    :toctree: generated/
    :template: function.rst

    vit_b_16
    vit_b_32
    vit_l_16
    vit_l_32
449
    vit_h_14
450

451
452
453
454
455
456
457
458
459
460
461
462
ConvNeXt
--------

.. autosummary::
    :toctree: generated/
    :template: function.rst

    convnext_tiny
    convnext_small
    convnext_base
    convnext_large

463
SwinTransformer
Aditya Oke's avatar
Aditya Oke committed
464
---------------
465
466
467
468
469
470
471

.. autosummary::
    :toctree: generated/
    :template: function.rst

    swin_t

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
Quantized Models
----------------

The following architectures provide support for INT8 quantized models. You can get
a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    googlenet = models.quantization.googlenet()
    inception_v3 = models.quantization.inception_v3()
    mobilenet_v2 = models.quantization.mobilenet_v2()
    mobilenet_v3_large = models.quantization.mobilenet_v3_large()
    resnet18 = models.quantization.resnet18()
    resnet50 = models.quantization.resnet50()
    resnext101_32x8d = models.quantization.resnext101_32x8d()
488
    resnext101_64x4d = models.quantization.resnext101_64x4d()
489
490
    shufflenet_v2_x0_5 = models.quantization.shufflenet_v2_x0_5()
    shufflenet_v2_x1_0 = models.quantization.shufflenet_v2_x1_0()
491
492
    shufflenet_v2_x1_5 = models.quantization.shufflenet_v2_x1_5()
    shufflenet_v2_x2_0 = models.quantization.shufflenet_v2_x2_0()
493
494
495
496
497
498

Obtaining a pre-trained quantized model can be done with a few lines of code:

.. code:: python

    import torchvision.models as models
499
    model = models.quantization.mobilenet_v2(weights=MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1, quantize=True)
500
501
502
503
504
505
506
507
508
509
510
    model.eval()
    # run the model with quantized inputs and weights
    out = model(torch.rand(1, 3, 224, 224))

We provide pre-trained quantized weights for the following models:

================================  =============  =============
Model                             Acc@1          Acc@5
================================  =============  =============
MobileNet V2                      71.658         90.150
MobileNet V3 Large                73.004         90.858
511
ShuffleNet V2 x0.5                57.972         79.780
512
513
514
ShuffleNet V2 x1.0                68.360         87.582
ShuffleNet V2 x1.5                72.052         90.700
ShuffleNet V2 x2.0                75.354         92.488
515
516
517
ResNet 18                         69.494         88.882
ResNet 50                         75.920         92.814
ResNext 101 32x8d                 78.986         94.480
518
ResNext 101 64x4d                 82.898         96.326
519
520
521
522
Inception V3                      77.176         93.354
GoogleNet                         69.826         89.404
================================  =============  =============

523
524
525
526

Semantic Segmentation
=====================

527
528
529
The models subpackage contains definitions for the following model
architectures for semantic segmentation:

530
- `FCN ResNet50, ResNet101 <https://arxiv.org/abs/1411.4038>`_
531
532
- `DeepLabV3 ResNet50, ResNet101, MobileNetV3-Large <https://arxiv.org/abs/1706.05587>`_
- `LR-ASPP MobileNetV3-Large <https://arxiv.org/abs/1905.02244>`_
533

534
535
536
537
538
As with image classification models, all pre-trained models expect input images normalized in the same way.
The images have to be loaded in to a range of ``[0, 1]`` and then normalized using
``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
They have been trained on images resized such that their minimum size is 520.

539
540
For details on how to plot the masks of such models, you may refer to :ref:`semantic_seg_output`.

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are
present in the Pascal VOC dataset. You can see more information on how the subset has been selected in
``references/segmentation/coco_utils.py``. The classes that the pre-trained model outputs are the following,
in order:

  .. code-block:: python

      ['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
       'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
       'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

================================  =============  ====================
Network                           mean IoU       global pixelwise acc
================================  =============  ====================
557
FCN ResNet50                      60.5           91.4
558
FCN ResNet101                     63.7           91.9
559
DeepLabV3 ResNet50                66.4           92.4
560
DeepLabV3 ResNet101               67.4           92.4
561
562
DeepLabV3 MobileNetV3-Large       60.3           91.2
LR-ASPP MobileNetV3-Large         57.9           91.2
563
564
565
566
567
568
================================  =============  ====================


Fully Convolutional Networks
----------------------------

569
570
571
572
573
574
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.fcn_resnet50
    torchvision.models.segmentation.fcn_resnet101
575
576
577
578
579


DeepLabV3
---------

580
581
582
583
584
585
586
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.deeplabv3_resnet50
    torchvision.models.segmentation.deeplabv3_resnet101
    torchvision.models.segmentation.deeplabv3_mobilenet_v3_large
587
588
589
590
591


LR-ASPP
-------

592
593
594
595
596
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.lraspp_mobilenet_v3_large
597

598
.. _object_det_inst_seg_pers_keypoint_det:
599
600
601
602

Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

603
604
605
The models subpackage contains definitions for the following model
architectures for detection:

606
- `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_
Hu Ye's avatar
Hu Ye committed
607
- `FCOS <https://arxiv.org/abs/1904.01355>`_
608
609
610
- `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_
- `RetinaNet <https://arxiv.org/abs/1708.02002>`_
- `SSD <https://arxiv.org/abs/1512.02325>`_
611
- `SSDlite <https://arxiv.org/abs/1801.04381>`_
612

613
614
615
616
617
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision.

The models expect a list of ``Tensor[C, H, W]``, in the range ``0-1``.
618
The models internally resize the images but the behaviour varies depending
619
620
on the model. Check the constructor of the models for more information. The
output format of such models is illustrated in :ref:`instance_seg_output`.
621
622
623
624
625
626
627
628
629


For object detection and instance segmentation, the pre-trained
models return the predictions of the following classes:

  .. code-block:: python

      COCO_INSTANCE_CATEGORY_NAMES = [
          '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
630
631
          'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
          'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
632
          'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
633
634
635
636
637
638
639
640
          'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
          'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
          'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
          'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
          'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
          'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
          'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
          'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
641
642
643
644
645
646
      ]


Here are the summary of the accuracies for the models trained on
the instances set of COCO train2017 and evaluated on COCO val2017.

647
648
649
650
651
652
======================================  =======  ========  ===========
Network                                 box AP   mask AP   keypoint AP
======================================  =======  ========  ===========
Faster R-CNN ResNet-50 FPN              37.0     -         -
Faster R-CNN MobileNetV3-Large FPN      32.8     -         -
Faster R-CNN MobileNetV3-Large 320 FPN  22.8     -         -
Hu Ye's avatar
Hu Ye committed
653
FCOS ResNet-50 FPN                      39.2     -         -
654
RetinaNet ResNet-50 FPN                 36.4     -         -
655
656
SSD300 VGG16                            25.1     -         -
SSDlite320 MobileNetV3-Large            21.3     -         -
657
658
Mask R-CNN ResNet-50 FPN                37.9     34.6      -
======================================  =======  ========  ===========
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

For person keypoint detection, the accuracies for the pre-trained
models are as follows

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Keypoint R-CNN ResNet-50 FPN      54.6     -         65.0
================================  =======  ========  ===========

For person keypoint detection, the pre-trained model return the
keypoints in the following order:

  .. code-block:: python

    COCO_PERSON_KEYPOINT_NAMES = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]

694
695
696
697
698
699
Runtime characteristics
-----------------------

The implementations of the models for object detection, instance segmentation
and keypoint detection are efficient.

700
701
702
In the following table, we use 8 GPUs to report the results. During training,
we use a batch size of 2 per GPU for all models except SSD which uses 4
and SSDlite which uses 24. During testing a batch size  of 1 is used.
703
704
705
706
707

For test time, we report the time for the model evaluation and postprocessing
(including mask pasting in image), but not the time for computing the
precision-recall.

708
709
710
711
712
713
======================================  ===================  ==================  ===========
Network                                 train time (s / it)  test time (s / it)  memory (GB)
======================================  ===================  ==================  ===========
Faster R-CNN ResNet-50 FPN              0.2288               0.0590              5.2
Faster R-CNN MobileNetV3-Large FPN      0.1020               0.0415              1.0
Faster R-CNN MobileNetV3-Large 320 FPN  0.0978               0.0376              0.6
Hu Ye's avatar
Hu Ye committed
714
FCOS ResNet-50 FPN                      0.1450               0.0539              3.3
715
RetinaNet ResNet-50 FPN                 0.2514               0.0939              4.1
716
717
SSD300 VGG16                            0.2093               0.0744              1.5
SSDlite320 MobileNetV3-Large            0.1773               0.0906              1.5
718
719
720
Mask R-CNN ResNet-50 FPN                0.2728               0.0903              5.4
Keypoint R-CNN ResNet-50 FPN            0.3789               0.1242              6.8
======================================  ===================  ==================  ===========
721
722
723
724
725


Faster R-CNN
------------

726
727
728
729
730
731
732
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.fasterrcnn_resnet50_fpn
    torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn
    torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn
733

Hu Ye's avatar
Hu Ye committed
734
735
736
737
738
739
740
741
742
FCOS
----

.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.fcos_resnet50_fpn

743

744
RetinaNet
745
---------
746

747
748
749
750
751
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.retinanet_resnet50_fpn
752
753


754
SSD
755
---
756

757
758
759
760
761
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.ssd300_vgg16
762
763


764
SSDlite
765
-------
766

767
768
769
770
771
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.ssdlite320_mobilenet_v3_large
772
773


774
775
776
Mask R-CNN
----------

777
778
779
780
781
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.maskrcnn_resnet50_fpn
782
783
784
785
786


Keypoint R-CNN
--------------

787
788
789
790
791
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.keypointrcnn_resnet50_fpn
792

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

Video classification
====================

We provide models for action recognition pre-trained on Kinetics-400.
They have all been trained with the scripts provided in ``references/video_classification``.

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W),
where H and W are expected to be 112, and T is a number of video frames in a clip.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.43216, 0.394666, 0.37645]`` and ``std = [0.22803, 0.22145, 0.216989]``.


.. note::
  The normalization parameters are different from the image classification ones, and correspond
  to the mean and std from Kinetics-400.

.. note::
  For now, normalization code can be found in ``references/video_classification/transforms.py``,
  see the ``Normalize`` function there. Note that it differs from standard normalization for
  images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

================================  =============   =============
Network                           Clip acc@1      Clip acc@5
================================  =============   =============
ResNet 3D 18                      52.75           75.45
ResNet MC 18                      53.90           76.29
ResNet (2+1)D                     57.50           78.81
================================  =============   =============


ResNet 3D
----------

830
831
832
833
834
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.r3d_18
835
836
837
838

ResNet Mixed Convolution
------------------------

839
840
841
842
843
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.mc3_18
844
845
846
847

ResNet (2+1)D
-------------

848
849
850
851
852
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.r2plus1d_18
853
854
855
856
857
858
859
860
861
862
863
864
865

Optical flow
============

Raft
----

.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.optical_flow.raft_large
    torchvision.models.optical_flow.raft_small