models.rst 4.12 KB
Newer Older
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
1
2
torchvision.models
==================
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
3

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
The models subpackage contains definitions for the following model
architectures:

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
23
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
24
25
26
27
28
29
30
31
32
33
34
35
    inception = models.inception_v3()

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18(pretrained=True)
    alexnet = models.alexnet(pretrained=True)
    squeezenet = models.squeezenet1_0(pretrained=True)
    vgg16 = models.vgg16(pretrained=True)
Ahmed Abdo's avatar
Ahmed Abdo committed
36
    densenet = models.densenet161(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    inception = models.inception_v3(pretrained=True)

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

ImageNet 1-crop error rates (224x224)

================================  =============   =============
Network                           Top-1 error     Top-5 error
================================  =============   =============
AlexNet                           43.45           20.91
VGG-11                            30.98           11.37
VGG-13                            30.07           10.75
VGG-16                            28.41           9.62
VGG-19                            27.62           9.12
VGG-11 with batch normalization   29.62           10.19
VGG-13 with batch normalization   28.45           9.63
VGG-16 with batch normalization   26.63           8.50
VGG-19 with batch normalization   25.76           8.15
ResNet-18                         30.24           10.92
ResNet-34                         26.70           8.58
ResNet-50                         23.85           7.13
ResNet-101                        22.63           6.44
ResNet-152                        21.69           5.94
SqueezeNet 1.0                    41.90           19.58
SqueezeNet 1.1                    41.81           19.38
Densenet-121                      25.35           7.83
Densenet-169                      24.00           7.00
Densenet-201                      22.80           6.43
Densenet-161                      22.35           6.20
Inception v3                      22.55           6.44
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
87
88
89

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
Alexnet
-------

.. autofunction:: alexnet

VGG
---

.. autofunction:: vgg11
.. autofunction:: vgg11_bn
.. autofunction:: vgg13
.. autofunction:: vgg13_bn
.. autofunction:: vgg16
.. autofunction:: vgg16_bn
.. autofunction:: vgg19
.. autofunction:: vgg19_bn


ResNet
------

.. autofunction:: resnet18
.. autofunction:: resnet34
.. autofunction:: resnet50
.. autofunction:: resnet101
.. autofunction:: resnet152

SqueezeNet
----------

.. autofunction:: squeezenet1_0
.. autofunction:: squeezenet1_1

Sangwhan Moon's avatar
Sangwhan Moon committed
123
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
124
125
126
127
128
129
130
131
132
133
134
135
---------

.. autofunction:: densenet121
.. autofunction:: densenet169
.. autofunction:: densenet161
.. autofunction:: densenet201

Inception v3
------------

.. autofunction:: inception_v3