"git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "3d0c7794c8ea4491b32b81d0e7fd430789419aa0"
Commit a2093007 authored by Michael Kösel's avatar Michael Kösel Committed by Francisco Massa
Browse files

Add GoogLeNet (Inception v1) (#678)

* Add GoogLeNet (Inception v1)

* Fix missing padding

* Add missing ReLu to aux classifier

* Add Batch normalized version of GoogLeNet

* Use ceil_mode instead of padding and initialize weights using "xavier"

* Match BVLC GoogLeNet zero initialization of classifier

* Small cleanup

* use adaptive avg pool

* adjust network to match TensorFlow

* Update url of pre-trained model and add classification results on ImageNet

* Bugfix that improves performance by 1 point
parent a7d8898a
...@@ -10,6 +10,7 @@ architectures: ...@@ -10,6 +10,7 @@ architectures:
- `SqueezeNet`_ - `SqueezeNet`_
- `DenseNet`_ - `DenseNet`_
- `Inception`_ v3 - `Inception`_ v3
- `GoogLeNet`_
You can construct a model with random weights by calling its constructor: You can construct a model with random weights by calling its constructor:
...@@ -22,6 +23,7 @@ You can construct a model with random weights by calling its constructor: ...@@ -22,6 +23,7 @@ You can construct a model with random weights by calling its constructor:
squeezenet = models.squeezenet1_0() squeezenet = models.squeezenet1_0()
densenet = models.densenet161() densenet = models.densenet161()
inception = models.inception_v3() inception = models.inception_v3()
googlenet = models.googlenet()
We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`. We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``: These can be constructed by passing ``pretrained=True``:
...@@ -35,6 +37,7 @@ These can be constructed by passing ``pretrained=True``: ...@@ -35,6 +37,7 @@ These can be constructed by passing ``pretrained=True``:
vgg16 = models.vgg16(pretrained=True) vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True) densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True) inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
Instancing a pre-trained model will download its weights to a cache directory. Instancing a pre-trained model will download its weights to a cache directory.
This directory can be set using the `TORCH_MODEL_ZOO` environment variable. See This directory can be set using the `TORCH_MODEL_ZOO` environment variable. See
...@@ -84,6 +87,7 @@ Densenet-169 24.00 7.00 ...@@ -84,6 +87,7 @@ Densenet-169 24.00 7.00
Densenet-201 22.80 6.43 Densenet-201 22.80 6.43
Densenet-161 22.35 6.20 Densenet-161 22.35 6.20
Inception v3 22.55 6.44 Inception v3 22.55 6.44
GoogleNet 30.22 10.47
================================ ============= ============= ================================ ============= =============
...@@ -93,6 +97,7 @@ Inception v3 22.55 6.44 ...@@ -93,6 +97,7 @@ Inception v3 22.55 6.44
.. _SqueezeNet: https://arxiv.org/abs/1602.07360 .. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993 .. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567 .. _Inception: https://arxiv.org/abs/1512.00567
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
.. currentmodule:: torchvision.models .. currentmodule:: torchvision.models
...@@ -142,3 +147,8 @@ Inception v3 ...@@ -142,3 +147,8 @@ Inception v3
.. autofunction:: inception_v3 .. autofunction:: inception_v3
GoogLeNet
------------
.. autofunction:: googlenet
...@@ -4,3 +4,4 @@ from .vgg import * ...@@ -4,3 +4,4 @@ from .vgg import *
from .squeezenet import * from .squeezenet import *
from .inception import * from .inception import *
from .densenet import * from .densenet import *
from .googlenet import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import model_zoo
__all__ = ['GoogLeNet', 'googlenet']
model_urls = {
# GoogLeNet ported from TensorFlow
'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
}
def googlenet(pretrained=False, **kwargs):
r"""GoogLeNet (Inception v1) model architecture from
`"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
if 'transform_input' not in kwargs:
kwargs['transform_input'] = True
kwargs['init_weights'] = False
model = GoogLeNet(**kwargs)
model.load_state_dict(model_zoo.load_url(model_urls['googlenet']))
return model
return GoogLeNet(**kwargs)
class GoogLeNet(nn.Module):
def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.transform_input = transform_input
self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
if aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)
if init_weights:
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0.2)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.maxpool2(x)
x = self.inception3a(x)
x = self.inception3b(x)
x = self.maxpool3(x)
x = self.inception4a(x)
if self.training and self.aux_logits:
aux1 = self.aux1(x)
x = self.inception4b(x)
x = self.inception4c(x)
x = self.inception4d(x)
if self.training and self.aux_logits:
aux2 = self.aux2(x)
x = self.inception4e(x)
x = self.maxpool4(x)
x = self.inception5a(x)
x = self.inception5b(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.fc(x)
if self.training and self.aux_logits:
return aux1, aux2, x
return x
class Inception(nn.Module):
def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__()
self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
)
self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1)
)
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
)
def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)
outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)
class InceptionAux(nn.Module):
def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.conv = BasicConv2d(in_channels, 128, kernel_size=1)
self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)
def forward(self, x):
x = F.adaptive_avg_pool2d(x, (4, 4))
x = self.conv(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x), inplace=True)
x = F.dropout(x, 0.7, training=self.training)
x = self.fc2(x)
return x
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment