models.rst 23 KB
Newer Older
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
1
torchvision.models
2
3
4
5
6
##################


The models subpackage contains definitions of models for addressing
different tasks, including: image classification, pixelwise semantic
7
8
segmentation, object detection, instance segmentation, person
keypoint detection and video classification.
9

10
11
.. note ::
    Backward compatibility is guaranteed for loading a serialized 
12
    ``state_dict`` to the model created using old PyTorch version. 
13
    On the contrary, loading entire saved models or serialized 
14
15
    ``ScriptModules`` (seralized using older versions of PyTorch) 
    may not preserve the historic behaviour. Refer to the following 
16
17
18
    `documentation 
    <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_   

19
20
21

Classification
==============
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
22

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
23
The models subpackage contains definitions for the following model
24
architectures for image classification:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
25
26
27
28
29
30
31

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3
32
-  `GoogLeNet`_
Bar's avatar
Bar committed
33
-  `ShuffleNet`_ v2
34
35
-  `MobileNetV2`_
-  `MobileNetV3`_
36
-  `ResNeXt`_
37
-  `Wide ResNet`_
38
-  `MNASNet`_
39
-  `EfficientNet`_
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
40
41
42
43
44
45
46
47
48
49

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
50
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
51
    inception = models.inception_v3()
52
    googlenet = models.googlenet()
53
    shufflenet = models.shufflenet_v2_x1_0()
54
55
56
    mobilenet_v2 = models.mobilenet_v2()
    mobilenet_v3_large = models.mobilenet_v3_large()
    mobilenet_v3_small = models.mobilenet_v3_small()
57
    resnext50_32x4d = models.resnext50_32x4d()
58
    wide_resnet50_2 = models.wide_resnet50_2()
59
    mnasnet = models.mnasnet1_0()
60
61
62
63
64
65
66
67
    efficientnet_b0 = models.efficientnet_b0()
    efficientnet_b1 = models.efficientnet_b1()
    efficientnet_b2 = models.efficientnet_b2()
    efficientnet_b3 = models.efficientnet_b3()
    efficientnet_b4 = models.efficientnet_b4()
    efficientnet_b5 = models.efficientnet_b5()
    efficientnet_b6 = models.efficientnet_b6()
    efficientnet_b7 = models.efficientnet_b7()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
68
69
70
71
72
73
74
75
76
77
78

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18(pretrained=True)
    alexnet = models.alexnet(pretrained=True)
    squeezenet = models.squeezenet1_0(pretrained=True)
    vgg16 = models.vgg16(pretrained=True)
Ahmed Abdo's avatar
Ahmed Abdo committed
79
    densenet = models.densenet161(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
80
    inception = models.inception_v3(pretrained=True)
81
    googlenet = models.googlenet(pretrained=True)
82
    shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
83
84
    mobilenet_v2 = models.mobilenet_v2(pretrained=True)
    mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
85
    mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
86
    resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
87
    wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
88
    mnasnet = models.mnasnet1_0(pretrained=True)
89
90
91
92
93
94
95
96
    efficientnet_b0 = models.efficientnet_b0(pretrained=True)
    efficientnet_b1 = models.efficientnet_b1(pretrained=True)
    efficientnet_b2 = models.efficientnet_b2(pretrained=True)
    efficientnet_b3 = models.efficientnet_b3(pretrained=True)
    efficientnet_b4 = models.efficientnet_b4(pretrained=True)
    efficientnet_b5 = models.efficientnet_b5(pretrained=True)
    efficientnet_b6 = models.efficientnet_b6(pretrained=True)
    efficientnet_b7 = models.efficientnet_b7(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
97

98
99
100
101
Instancing a pre-trained model will download its weights to a cache directory.
This directory can be set using the `TORCH_MODEL_ZOO` environment variable. See
:func:`torch.utils.model_zoo.load_url` for details.

102
103
104
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
105
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
106

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
107
108
109
110
111
112
113
114
115
116
117
118
119
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
The process for obtaining the values of `mean` and `std` is roughly equivalent
to::

    import torch
    from torchvision import datasets, transforms as T

    transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()])
    dataset = datasets.ImageNet(".", split="train", transform=transform)

    means = []
    stds = []
    for img in subset(dataset):
        means.append(torch.mean(img))
        stds.append(torch.std(img))

    mean = torch.mean(torch.tensor(means))
    std = torch.mean(torch.tensor(stds))

138
Unfortunately, the concrete `subset` that was used is lost. For more
139
140
141
information see `this discussion <https://github.com/pytorch/vision/issues/1439>`_
or `these experiments <https://github.com/pytorch/vision/pull/1965>`_.

142
143
144
145
The sizes of the EfficientNet models depend on the variant. For the exact input sizes
`check here <https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/train.py#L92-L93>`_

ImageNet 1-crop error rates
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
146
147

================================  =============   =============
148
Model                             Acc@1           Acc@5
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
149
================================  =============   =============
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
AlexNet                           56.522          79.066
VGG-11                            69.020          88.628
VGG-13                            69.928          89.246
VGG-16                            71.592          90.382
VGG-19                            72.376          90.876
VGG-11 with batch normalization   70.370          89.810
VGG-13 with batch normalization   71.586          90.374
VGG-16 with batch normalization   73.360          91.516
VGG-19 with batch normalization   74.218          91.842
ResNet-18                         69.758          89.078
ResNet-34                         73.314          91.420
ResNet-50                         76.130          92.862
ResNet-101                        77.374          93.546
ResNet-152                        78.312          94.046
SqueezeNet 1.0                    58.092          80.420
SqueezeNet 1.1                    58.178          80.624
Densenet-121                      74.434          91.972
Densenet-169                      75.600          92.806
Densenet-201                      76.896          93.370
Densenet-161                      77.138          93.560
Inception v3                      77.294          93.450
GoogleNet                         69.778          89.530
ShuffleNet V2 x1.0                69.362          88.316
ShuffleNet V2 x0.5                60.552          81.746
MobileNet V2                      71.878          90.286
MobileNet V3 Large                74.042          91.340
176
MobileNet V3 Small                67.668          87.402
177
178
179
180
181
182
ResNeXt-50-32x4d                  77.618          93.698
ResNeXt-101-32x8d                 79.312          94.526
Wide ResNet-50-2                  78.468          94.086
Wide ResNet-101-2                 78.848          94.284
MNASNet 1.0                       73.456          91.510
MNASNet 0.5                       67.734          87.490
183
184
185
186
187
188
189
190
EfficientNet-B0                   77.692          93.532
EfficientNet-B1                   78.642          94.186
EfficientNet-B2                   80.608          95.310
EfficientNet-B3                   82.008          96.054
EfficientNet-B4                   83.384          96.594
EfficientNet-B5                   83.444          96.628
EfficientNet-B6                   84.008          96.916
EfficientNet-B7                   84.122          96.908
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
191
192
193
194
195
196
197
198
199
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
200
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
Bar's avatar
Bar committed
201
.. _ShuffleNet: https://arxiv.org/abs/1807.11164
202
203
.. _MobileNetV2: https://arxiv.org/abs/1801.04381
.. _MobileNetV3: https://arxiv.org/abs/1905.02244
204
.. _ResNeXt: https://arxiv.org/abs/1611.05431
205
.. _MNASNet: https://arxiv.org/abs/1807.11626
206
.. _EfficientNet: https://arxiv.org/abs/1905.11946
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
207
208
209

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
Alexnet
-------

.. autofunction:: alexnet

VGG
---

.. autofunction:: vgg11
.. autofunction:: vgg11_bn
.. autofunction:: vgg13
.. autofunction:: vgg13_bn
.. autofunction:: vgg16
.. autofunction:: vgg16_bn
.. autofunction:: vgg19
.. autofunction:: vgg19_bn


ResNet
------

.. autofunction:: resnet18
.. autofunction:: resnet34
.. autofunction:: resnet50
.. autofunction:: resnet101
.. autofunction:: resnet152

SqueezeNet
----------

.. autofunction:: squeezenet1_0
.. autofunction:: squeezenet1_1

Sangwhan Moon's avatar
Sangwhan Moon committed
243
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
244
245
246
247
248
249
250
251
252
253
254
255
---------

.. autofunction:: densenet121
.. autofunction:: densenet169
.. autofunction:: densenet161
.. autofunction:: densenet201

Inception v3
------------

.. autofunction:: inception_v3

256
257
258
259
.. note ::
    This requires `scipy` to be installed


260
261
262
263
264
GoogLeNet
------------

.. autofunction:: googlenet

265
266
267
268
.. note ::
    This requires `scipy` to be installed


Bar's avatar
Bar committed
269
270
271
ShuffleNet v2
-------------

272
273
274
275
.. autofunction:: shufflenet_v2_x0_5
.. autofunction:: shufflenet_v2_x1_0
.. autofunction:: shufflenet_v2_x1_5
.. autofunction:: shufflenet_v2_x2_0
Bar's avatar
Bar committed
276

277
278
279
280
281
MobileNet v2
-------------

.. autofunction:: mobilenet_v2

282
283
284
285
286
287
MobileNet v3
-------------

.. autofunction:: mobilenet_v3_large
.. autofunction:: mobilenet_v3_small

288
ResNext
289
-------
290
291
292
293

.. autofunction:: resnext50_32x4d
.. autofunction:: resnext101_32x8d

294
295
296
297
298
299
Wide ResNet
-----------

.. autofunction:: wide_resnet50_2
.. autofunction:: wide_resnet101_2

300
301
302
303
304
305
306
307
MNASNet
--------

.. autofunction:: mnasnet0_5
.. autofunction:: mnasnet0_75
.. autofunction:: mnasnet1_0
.. autofunction:: mnasnet1_3

308
309
310
311
312
313
314
315
316
317
318
319
EfficientNet
------------

.. autofunction:: efficientnet_b0
.. autofunction:: efficientnet_b1
.. autofunction:: efficientnet_b2
.. autofunction:: efficientnet_b3
.. autofunction:: efficientnet_b4
.. autofunction:: efficientnet_b5
.. autofunction:: efficientnet_b6
.. autofunction:: efficientnet_b7

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
Quantized Models
----------------

The following architectures provide support for INT8 quantized models. You can get
a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    googlenet = models.quantization.googlenet()
    inception_v3 = models.quantization.inception_v3()
    mobilenet_v2 = models.quantization.mobilenet_v2()
    mobilenet_v3_large = models.quantization.mobilenet_v3_large()
    resnet18 = models.quantization.resnet18()
    resnet50 = models.quantization.resnet50()
    resnext101_32x8d = models.quantization.resnext101_32x8d()
    shufflenet_v2_x0_5 = models.quantization.shufflenet_v2_x0_5()
    shufflenet_v2_x1_0 = models.quantization.shufflenet_v2_x1_0()
    shufflenet_v2_x1_5 = models.quantization.shufflenet_v2_x1_5()
    shufflenet_v2_x2_0 = models.quantization.shufflenet_v2_x2_0()

Obtaining a pre-trained quantized model can be done with a few lines of code:

.. code:: python

    import torchvision.models as models
    model = models.quantization.mobilenet_v2(pretrained=True, quantize=True)
    model.eval()
    # run the model with quantized inputs and weights
    out = model(torch.rand(1, 3, 224, 224))

We provide pre-trained quantized weights for the following models:

================================  =============  =============
Model                             Acc@1          Acc@5
================================  =============  =============
MobileNet V2                      71.658         90.150
MobileNet V3 Large                73.004         90.858
ShuffleNet V2                     68.360         87.582
ResNet 18                         69.494         88.882
ResNet 50                         75.920         92.814
ResNext 101 32x8d                 78.986         94.480
Inception V3                      77.176         93.354
GoogleNet                         69.826         89.404
================================  =============  =============

366
367
368
369

Semantic Segmentation
=====================

370
371
372
The models subpackage contains definitions for the following model
architectures for semantic segmentation:

373
- `FCN ResNet50, ResNet101 <https://arxiv.org/abs/1411.4038>`_
374
375
- `DeepLabV3 ResNet50, ResNet101, MobileNetV3-Large <https://arxiv.org/abs/1706.05587>`_
- `LR-ASPP MobileNetV3-Large <https://arxiv.org/abs/1905.02244>`_
376

377
378
379
380
381
As with image classification models, all pre-trained models expect input images normalized in the same way.
The images have to be loaded in to a range of ``[0, 1]`` and then normalized using
``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
They have been trained on images resized such that their minimum size is 520.

382
383
For details on how to plot the masks of such models, you may refer to :ref:`semantic_seg_output`.

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are
present in the Pascal VOC dataset. You can see more information on how the subset has been selected in
``references/segmentation/coco_utils.py``. The classes that the pre-trained model outputs are the following,
in order:

  .. code-block:: python

      ['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
       'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
       'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

================================  =============  ====================
Network                           mean IoU       global pixelwise acc
================================  =============  ====================
400
FCN ResNet50                      60.5           91.4
401
FCN ResNet101                     63.7           91.9
402
DeepLabV3 ResNet50                66.4           92.4
403
DeepLabV3 ResNet101               67.4           92.4
404
405
DeepLabV3 MobileNetV3-Large       60.3           91.2
LR-ASPP MobileNetV3-Large         57.9           91.2
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
================================  =============  ====================


Fully Convolutional Networks
----------------------------

.. autofunction:: torchvision.models.segmentation.fcn_resnet50
.. autofunction:: torchvision.models.segmentation.fcn_resnet101


DeepLabV3
---------

.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet50
.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet101
421
422
423
424
425
426
427
.. autofunction:: torchvision.models.segmentation.deeplabv3_mobilenet_v3_large


LR-ASPP
-------

.. autofunction:: torchvision.models.segmentation.lraspp_mobilenet_v3_large
428

429
.. _object_det_inst_seg_pers_keypoint_det:
430
431
432
433

Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

434
435
436
The models subpackage contains definitions for the following model
architectures for detection:

437
438
439
440
- `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_
- `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_
- `RetinaNet <https://arxiv.org/abs/1708.02002>`_
- `SSD <https://arxiv.org/abs/1512.02325>`_
441
- `SSDlite <https://arxiv.org/abs/1801.04381>`_
442

443
444
445
446
447
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision.

The models expect a list of ``Tensor[C, H, W]``, in the range ``0-1``.
448
The models internally resize the images but the behaviour varies depending
449
450
on the model. Check the constructor of the models for more information. The
output format of such models is illustrated in :ref:`instance_seg_output`.
451
452
453
454
455
456
457
458
459


For object detection and instance segmentation, the pre-trained
models return the predictions of the following classes:

  .. code-block:: python

      COCO_INSTANCE_CATEGORY_NAMES = [
          '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
460
461
          'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
          'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
462
          'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
463
464
465
466
467
468
469
470
          'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
          'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
          'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
          'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
          'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
          'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
          'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
          'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
471
472
473
474
475
476
      ]


Here are the summary of the accuracies for the models trained on
the instances set of COCO train2017 and evaluated on COCO val2017.

477
478
479
480
481
482
483
======================================  =======  ========  ===========
Network                                 box AP   mask AP   keypoint AP
======================================  =======  ========  ===========
Faster R-CNN ResNet-50 FPN              37.0     -         -
Faster R-CNN MobileNetV3-Large FPN      32.8     -         -
Faster R-CNN MobileNetV3-Large 320 FPN  22.8     -         -
RetinaNet ResNet-50 FPN                 36.4     -         -
484
485
SSD300 VGG16                            25.1     -         -
SSDlite320 MobileNetV3-Large            21.3     -         -
486
487
Mask R-CNN ResNet-50 FPN                37.9     34.6      -
======================================  =======  ========  ===========
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

For person keypoint detection, the accuracies for the pre-trained
models are as follows

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Keypoint R-CNN ResNet-50 FPN      54.6     -         65.0
================================  =======  ========  ===========

For person keypoint detection, the pre-trained model return the
keypoints in the following order:

  .. code-block:: python

    COCO_PERSON_KEYPOINT_NAMES = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]

523
524
525
526
527
528
Runtime characteristics
-----------------------

The implementations of the models for object detection, instance segmentation
and keypoint detection are efficient.

529
530
531
In the following table, we use 8 GPUs to report the results. During training,
we use a batch size of 2 per GPU for all models except SSD which uses 4
and SSDlite which uses 24. During testing a batch size  of 1 is used.
532
533
534
535
536

For test time, we report the time for the model evaluation and postprocessing
(including mask pasting in image), but not the time for computing the
precision-recall.

537
538
539
540
541
542
543
======================================  ===================  ==================  ===========
Network                                 train time (s / it)  test time (s / it)  memory (GB)
======================================  ===================  ==================  ===========
Faster R-CNN ResNet-50 FPN              0.2288               0.0590              5.2
Faster R-CNN MobileNetV3-Large FPN      0.1020               0.0415              1.0
Faster R-CNN MobileNetV3-Large 320 FPN  0.0978               0.0376              0.6
RetinaNet ResNet-50 FPN                 0.2514               0.0939              4.1
544
545
SSD300 VGG16                            0.2093               0.0744              1.5
SSDlite320 MobileNetV3-Large            0.1773               0.0906              1.5
546
547
548
Mask R-CNN ResNet-50 FPN                0.2728               0.0903              5.4
Keypoint R-CNN ResNet-50 FPN            0.3789               0.1242              6.8
======================================  ===================  ==================  ===========
549
550
551
552
553
554


Faster R-CNN
------------

.. autofunction:: torchvision.models.detection.fasterrcnn_resnet50_fpn
555
.. autofunction:: torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn
556
.. autofunction:: torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn
557
558


559
RetinaNet
560
---------
561
562
563
564

.. autofunction:: torchvision.models.detection.retinanet_resnet50_fpn


565
SSD
566
---
567
568
569
570

.. autofunction:: torchvision.models.detection.ssd300_vgg16


571
SSDlite
572
-------
573
574
575
576

.. autofunction:: torchvision.models.detection.ssdlite320_mobilenet_v3_large


577
578
579
580
581
582
583
584
585
586
587
Mask R-CNN
----------

.. autofunction:: torchvision.models.detection.maskrcnn_resnet50_fpn


Keypoint R-CNN
--------------

.. autofunction:: torchvision.models.detection.keypointrcnn_resnet50_fpn

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

Video classification
====================

We provide models for action recognition pre-trained on Kinetics-400.
They have all been trained with the scripts provided in ``references/video_classification``.

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W),
where H and W are expected to be 112, and T is a number of video frames in a clip.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.43216, 0.394666, 0.37645]`` and ``std = [0.22803, 0.22145, 0.216989]``.


.. note::
  The normalization parameters are different from the image classification ones, and correspond
  to the mean and std from Kinetics-400.

.. note::
  For now, normalization code can be found in ``references/video_classification/transforms.py``,
  see the ``Normalize`` function there. Note that it differs from standard normalization for
  images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

================================  =============   =============
Network                           Clip acc@1      Clip acc@5
================================  =============   =============
ResNet 3D 18                      52.75           75.45
ResNet MC 18                      53.90           76.29
ResNet (2+1)D                     57.50           78.81
================================  =============   =============


ResNet 3D
----------

.. autofunction:: torchvision.models.video.r3d_18

ResNet Mixed Convolution
------------------------

.. autofunction:: torchvision.models.video.mc3_18

ResNet (2+1)D
-------------

.. autofunction:: torchvision.models.video.r2plus1d_18