models.rst 13.2 KB
Newer Older
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
1
torchvision.models
2
3
4
5
6
7
8
9
10
11
12
##################


The models subpackage contains definitions of models for addressing
different tasks, including: image classification, pixelwise semantic
segmentation, object detection, instance segmentation and person
keypoint detection.


Classification
==============
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
13

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
14
The models subpackage contains definitions for the following model
15
architectures for image classification:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
16
17
18
19
20
21
22

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3
23
-  `GoogLeNet`_
Bar's avatar
Bar committed
24
-  `ShuffleNet`_ v2
25
26
-  `MobileNet`_ v2
-  `ResNeXt`_
27
-  `MNASNet`_
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
28
29
30
31
32
33
34
35
36
37

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
38
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
39
    inception = models.inception_v3()
40
    googlenet = models.googlenet()
41
42
43
    shufflenet = models.shufflenet_v2_x1_0()
    mobilenet = models.mobilenet_v2()
    resnext50_32x4d = models.resnext50_32x4d()
44
    mnasnet = models.mnasnet1_0()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
45
46
47
48
49
50
51
52
53
54
55

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18(pretrained=True)
    alexnet = models.alexnet(pretrained=True)
    squeezenet = models.squeezenet1_0(pretrained=True)
    vgg16 = models.vgg16(pretrained=True)
Ahmed Abdo's avatar
Ahmed Abdo committed
56
    densenet = models.densenet161(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
57
    inception = models.inception_v3(pretrained=True)
58
    googlenet = models.googlenet(pretrained=True)
59
60
61
    shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
    mobilenet = models.mobilenet_v2(pretrained=True)
    resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
62
    mnasnet = models.mnasnet1_0(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
63

64
65
66
67
Instancing a pre-trained model will download its weights to a cache directory.
This directory can be set using the `TORCH_MODEL_ZOO` environment variable. See
:func:`torch.utils.model_zoo.load_url` for details.

68
69
70
71
72
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details. 

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

ImageNet 1-crop error rates (224x224)

================================  =============   =============
Network                           Top-1 error     Top-5 error
================================  =============   =============
AlexNet                           43.45           20.91
VGG-11                            30.98           11.37
VGG-13                            30.07           10.75
VGG-16                            28.41           9.62
VGG-19                            27.62           9.12
VGG-11 with batch normalization   29.62           10.19
VGG-13 with batch normalization   28.45           9.63
VGG-16 with batch normalization   26.63           8.50
VGG-19 with batch normalization   25.76           8.15
ResNet-18                         30.24           10.92
ResNet-34                         26.70           8.58
ResNet-50                         23.85           7.13
ResNet-101                        22.63           6.44
ResNet-152                        21.69           5.94
SqueezeNet 1.0                    41.90           19.58
SqueezeNet 1.1                    41.81           19.38
Densenet-121                      25.35           7.83
Densenet-169                      24.00           7.00
Densenet-201                      22.80           6.43
Densenet-161                      22.35           6.20
Inception v3                      22.55           6.44
112
GoogleNet                         30.22           10.47
Bar's avatar
Bar committed
113
ShuffleNet V2                     30.64           11.68
114
115
116
MobileNet V2                      28.12           9.71
ResNeXt-50-32x4d                  22.38           6.30
ResNeXt-101-32x8d                 20.69           5.47
117
MNASNet 1.0                       26.49           8.456
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
118
119
120
121
122
123
124
125
126
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
127
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
Bar's avatar
Bar committed
128
.. _ShuffleNet: https://arxiv.org/abs/1807.11164
129
130
.. _MobileNet: https://arxiv.org/abs/1801.04381
.. _ResNeXt: https://arxiv.org/abs/1611.05431
131
.. _MNASNet: https://arxiv.org/abs/1807.11626
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
132
133
134

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
Alexnet
-------

.. autofunction:: alexnet

VGG
---

.. autofunction:: vgg11
.. autofunction:: vgg11_bn
.. autofunction:: vgg13
.. autofunction:: vgg13_bn
.. autofunction:: vgg16
.. autofunction:: vgg16_bn
.. autofunction:: vgg19
.. autofunction:: vgg19_bn


ResNet
------

.. autofunction:: resnet18
.. autofunction:: resnet34
.. autofunction:: resnet50
.. autofunction:: resnet101
.. autofunction:: resnet152

SqueezeNet
----------

.. autofunction:: squeezenet1_0
.. autofunction:: squeezenet1_1

Sangwhan Moon's avatar
Sangwhan Moon committed
168
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
169
170
171
172
173
174
175
176
177
178
179
180
---------

.. autofunction:: densenet121
.. autofunction:: densenet169
.. autofunction:: densenet161
.. autofunction:: densenet201

Inception v3
------------

.. autofunction:: inception_v3

181
182
183
184
185
GoogLeNet
------------

.. autofunction:: googlenet

Bar's avatar
Bar committed
186
187
188
ShuffleNet v2
-------------

189
190
191
192
.. autofunction:: shufflenet_v2_x0_5
.. autofunction:: shufflenet_v2_x1_0
.. autofunction:: shufflenet_v2_x1_5
.. autofunction:: shufflenet_v2_x2_0
Bar's avatar
Bar committed
193

194
195
196
197
198
199
MobileNet v2
-------------

.. autofunction:: mobilenet_v2

ResNext
200
-------
201
202
203
204

.. autofunction:: resnext50_32x4d
.. autofunction:: resnext101_32x8d

205
206
207
208
209
210
211
212
MNASNet
--------

.. autofunction:: mnasnet0_5
.. autofunction:: mnasnet0_75
.. autofunction:: mnasnet1_0
.. autofunction:: mnasnet1_3

213
214
215
216

Semantic Segmentation
=====================

217
218
219
220
221
222
The models subpackage contains definitions for the following model
architectures for semantic segmentation:

- `FCN ResNet101 <https://arxiv.org/abs/1411.4038>`_
- `DeepLabV3 ResNet101 <https://arxiv.org/abs/1706.05587>`_

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
As with image classification models, all pre-trained models expect input images normalized in the same way.
The images have to be loaded in to a range of ``[0, 1]`` and then normalized using
``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
They have been trained on images resized such that their minimum size is 520.

The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are
present in the Pascal VOC dataset. You can see more information on how the subset has been selected in
``references/segmentation/coco_utils.py``. The classes that the pre-trained model outputs are the following,
in order:

  .. code-block:: python

      ['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
       'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
       'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

================================  =============  ====================
Network                           mean IoU       global pixelwise acc
================================  =============  ====================
FCN ResNet101                     63.7           91.9
DeepLabV3 ResNet101               67.4           92.4
================================  =============  ====================


Fully Convolutional Networks
----------------------------

.. autofunction:: torchvision.models.segmentation.fcn_resnet50
.. autofunction:: torchvision.models.segmentation.fcn_resnet101


DeepLabV3
---------

.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet50
.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet101


Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

266
267
268
269
270
271
The models subpackage contains definitions for the following model
architectures for detection:

- `Faster R-CNN ResNet-50 FPN <https://arxiv.org/abs/1506.01497>`_
- `Mask R-CNN ResNet-50 FPN <https://arxiv.org/abs/1703.06870>`_

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision.

The models expect a list of ``Tensor[C, H, W]``, in the range ``0-1``.
The models internally resize the images so that they have a minimum size
of ``800``. This option can be changed by passing the option ``min_size``
to the constructor of the models.


For object detection and instance segmentation, the pre-trained
models return the predictions of the following classes:

  .. code-block:: python

      COCO_INSTANCE_CATEGORY_NAMES = [
          '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
289
290
          'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
          'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
291
          'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
292
293
294
295
296
297
298
299
          'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
          'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
          'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
          'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
          'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
          'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
          'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
          'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
      ]


Here are the summary of the accuracies for the models trained on
the instances set of COCO train2017 and evaluated on COCO val2017.

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Faster R-CNN ResNet-50 FPN        37.0     -         -
Mask R-CNN ResNet-50 FPN          37.9     34.6      -
================================  =======  ========  ===========

For person keypoint detection, the accuracies for the pre-trained
models are as follows

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Keypoint R-CNN ResNet-50 FPN      54.6     -         65.0
================================  =======  ========  ===========

For person keypoint detection, the pre-trained model return the
keypoints in the following order:

  .. code-block:: python

    COCO_PERSON_KEYPOINT_NAMES = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
Runtime characteristics
-----------------------

The implementations of the models for object detection, instance segmentation
and keypoint detection are efficient.

In the following table, we use 8 V100 GPUs, with CUDA 10.0 and CUDNN 7.4 to
report the results. During training, we use a batch size of 2 per GPU, and
during testing a batch size of 1 is used.

For test time, we report the time for the model evaluation and postprocessing
(including mask pasting in image), but not the time for computing the
precision-recall.

==============================  ===================  ==================  ===========
Network                         train time (s / it)  test time (s / it)  memory (GB)
==============================  ===================  ==================  ===========
Faster R-CNN ResNet-50 FPN      0.2288               0.0590              5.2
Mask R-CNN ResNet-50 FPN        0.2728               0.0903              5.4
Keypoint R-CNN ResNet-50 FPN    0.3789               0.1242              6.8
==============================  ===================  ==================  ===========
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386


Faster R-CNN
------------

.. autofunction:: torchvision.models.detection.fasterrcnn_resnet50_fpn


Mask R-CNN
----------

.. autofunction:: torchvision.models.detection.maskrcnn_resnet50_fpn


Keypoint R-CNN
--------------

.. autofunction:: torchvision.models.detection.keypointrcnn_resnet50_fpn