models.rst 27.1 KB
Newer Older
1
2
.. _models:

3
4
Models and pre-trained weights
##############################
5
6


7
The ``torchvision.models`` subpackage contains definitions of models for addressing
8
different tasks, including: image classification, pixelwise semantic
9
segmentation, object detection, instance segmentation, person
10
keypoint detection, video classification, and optical flow.
11

12
13
.. note ::
    Backward compatibility is guaranteed for loading a serialized 
14
    ``state_dict`` to the model created using old PyTorch version. 
15
    On the contrary, loading entire saved models or serialized 
16
17
    ``ScriptModules`` (seralized using older versions of PyTorch) 
    may not preserve the historic behaviour. Refer to the following 
18
19
20
    `documentation 
    <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_   

21
22
23

Classification
==============
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
24

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
25
The models subpackage contains definitions for the following model
26
architectures for image classification:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
27
28
29
30
31
32
33

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3
34
-  `GoogLeNet`_
Bar's avatar
Bar committed
35
-  `ShuffleNet`_ v2
36
37
-  `MobileNetV2`_
-  `MobileNetV3`_
38
-  `ResNeXt`_
39
-  `Wide ResNet`_
40
-  `MNASNet`_
41
-  `EfficientNet`_ v1 & v2
42
-  `RegNet`_
43
-  `VisionTransformer`_
44
-  `ConvNeXt`_
45
-  `SwinTransformer`_
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
46
47
48
49
50
51
52
53
54
55

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
56
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
57
    inception = models.inception_v3()
58
    googlenet = models.googlenet()
59
    shufflenet = models.shufflenet_v2_x1_0()
60
61
62
    mobilenet_v2 = models.mobilenet_v2()
    mobilenet_v3_large = models.mobilenet_v3_large()
    mobilenet_v3_small = models.mobilenet_v3_small()
63
    resnext50_32x4d = models.resnext50_32x4d()
64
    wide_resnet50_2 = models.wide_resnet50_2()
65
    mnasnet = models.mnasnet1_0()
66
67
68
69
70
71
72
73
    efficientnet_b0 = models.efficientnet_b0()
    efficientnet_b1 = models.efficientnet_b1()
    efficientnet_b2 = models.efficientnet_b2()
    efficientnet_b3 = models.efficientnet_b3()
    efficientnet_b4 = models.efficientnet_b4()
    efficientnet_b5 = models.efficientnet_b5()
    efficientnet_b6 = models.efficientnet_b6()
    efficientnet_b7 = models.efficientnet_b7()
74
75
76
    efficientnet_v2_s = models.efficientnet_v2_s()
    efficientnet_v2_m = models.efficientnet_v2_m()
    efficientnet_v2_l = models.efficientnet_v2_l()
77
78
79
80
81
82
83
    regnet_y_400mf = models.regnet_y_400mf()
    regnet_y_800mf = models.regnet_y_800mf()
    regnet_y_1_6gf = models.regnet_y_1_6gf()
    regnet_y_3_2gf = models.regnet_y_3_2gf()
    regnet_y_8gf = models.regnet_y_8gf()
    regnet_y_16gf = models.regnet_y_16gf()
    regnet_y_32gf = models.regnet_y_32gf()
84
    regnet_y_128gf = models.regnet_y_128gf()
85
86
87
88
89
90
91
    regnet_x_400mf = models.regnet_x_400mf()
    regnet_x_800mf = models.regnet_x_800mf()
    regnet_x_1_6gf = models.regnet_x_1_6gf()
    regnet_x_3_2gf = models.regnet_x_3_2gf()
    regnet_x_8gf = models.regnet_x_8gf()
    regnet_x_16gf = models.regnet_x_16gf()
    regnet_x_32gf = models.regnet_x_32gf()
92
93
94
95
    vit_b_16 = models.vit_b_16()
    vit_b_32 = models.vit_b_32()
    vit_l_16 = models.vit_l_16()
    vit_l_32 = models.vit_l_32()
96
    vit_h_14 = models.vit_h_14()
97
98
99
100
    convnext_tiny = models.convnext_tiny()
    convnext_small = models.convnext_small()
    convnext_base = models.convnext_base()
    convnext_large = models.convnext_large()
101
    swin_t = models.swin_t()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
102
103
104

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.

105
Instancing a pre-trained model will download its weights to a cache directory.
106
107
This directory can be set using the `TORCH_HOME` environment variable. See
:func:`torch.hub.load_state_dict_from_url` for details.
108

109
110
111
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
112
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
113

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
114
115
116
117
118
119
120
121
122
123
124
125
126
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

127
128
129
130
131
132
The process for obtaining the values of `mean` and `std` is roughly equivalent
to::

    import torch
    from torchvision import datasets, transforms as T

133
    transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.PILToTensor(), T.ConvertImageDtype(torch.float)])
134
135
136
137
138
139
140
141
142
143
144
    dataset = datasets.ImageNet(".", split="train", transform=transform)

    means = []
    stds = []
    for img in subset(dataset):
        means.append(torch.mean(img))
        stds.append(torch.std(img))

    mean = torch.mean(torch.tensor(means))
    std = torch.mean(torch.tensor(stds))

145
Unfortunately, the concrete `subset` that was used is lost. For more
146
147
148
information see `this discussion <https://github.com/pytorch/vision/issues/1439>`_
or `these experiments <https://github.com/pytorch/vision/pull/1965>`_.

149
150
151
152
The sizes of the EfficientNet models depend on the variant. For the exact input sizes
`check here <https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/train.py#L92-L93>`_

ImageNet 1-crop error rates
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
153
154

================================  =============   =============
155
Model                             Acc@1           Acc@5
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
156
================================  =============   =============
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
AlexNet                           56.522          79.066
VGG-11                            69.020          88.628
VGG-13                            69.928          89.246
VGG-16                            71.592          90.382
VGG-19                            72.376          90.876
VGG-11 with batch normalization   70.370          89.810
VGG-13 with batch normalization   71.586          90.374
VGG-16 with batch normalization   73.360          91.516
VGG-19 with batch normalization   74.218          91.842
ResNet-18                         69.758          89.078
ResNet-34                         73.314          91.420
ResNet-50                         76.130          92.862
ResNet-101                        77.374          93.546
ResNet-152                        78.312          94.046
SqueezeNet 1.0                    58.092          80.420
SqueezeNet 1.1                    58.178          80.624
Densenet-121                      74.434          91.972
Densenet-169                      75.600          92.806
Densenet-201                      76.896          93.370
Densenet-161                      77.138          93.560
Inception v3                      77.294          93.450
GoogleNet                         69.778          89.530
ShuffleNet V2 x0.5                60.552          81.746
180
181
182
ShuffleNet V2 x1.0                69.362          88.316
ShuffleNet V2 x1.5                72.996          91.086
ShuffleNet V2 x2.0                76.230          93.006
183
184
MobileNet V2                      71.878          90.286
MobileNet V3 Large                74.042          91.340
185
MobileNet V3 Small                67.668          87.402
186
187
188
189
190
191
ResNeXt-50-32x4d                  77.618          93.698
ResNeXt-101-32x8d                 79.312          94.526
Wide ResNet-50-2                  78.468          94.086
Wide ResNet-101-2                 78.848          94.284
MNASNet 1.0                       73.456          91.510
MNASNet 0.5                       67.734          87.490
192
193
194
195
196
197
198
199
EfficientNet-B0                   77.692          93.532
EfficientNet-B1                   78.642          94.186
EfficientNet-B2                   80.608          95.310
EfficientNet-B3                   82.008          96.054
EfficientNet-B4                   83.384          96.594
EfficientNet-B5                   83.444          96.628
EfficientNet-B6                   84.008          96.916
EfficientNet-B7                   84.122          96.908
200
201
202
EfficientNetV2-s                  84.228          96.878
EfficientNetV2-m                  85.112          97.156
EfficientNetV2-l                  85.810          97.792
203
204
205
206
207
208
209
210
regnet_x_400mf                    72.834          90.950
regnet_x_800mf                    75.212          92.348
regnet_x_1_6gf                    77.040          93.440
regnet_x_3_2gf                    78.364          93.992
regnet_x_8gf                      79.344          94.686 
regnet_x_16gf                     80.058          94.944
regnet_x_32gf                     80.622          95.248
regnet_y_400mf                    74.046          91.716
211
regnet_y_800mf                    76.420          93.136
212
213
214
215
216
regnet_y_1_6gf                    77.950          93.966
regnet_y_3_2gf                    78.948          94.576
regnet_y_8gf                      80.032          95.048
regnet_y_16gf                     80.424          95.240
regnet_y_32gf                     80.878          95.340
217
218
219
220
vit_b_16                          81.072          95.318
vit_b_32                          75.912          92.466
vit_l_16                          79.662          94.638
vit_l_32                          76.972          93.070
221
vit_h_14                          88.552          98.694 
222
223
224
225
convnext_tiny                     82.520          96.146
convnext_small                    83.616          96.650
convnext_base                     84.062          96.870
convnext_large                    84.414          96.976
226
swin_t                            81.358          95.526
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
227
228
229
230
231
232
233
234
235
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
236
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
Bar's avatar
Bar committed
237
.. _ShuffleNet: https://arxiv.org/abs/1807.11164
238
239
.. _MobileNetV2: https://arxiv.org/abs/1801.04381
.. _MobileNetV3: https://arxiv.org/abs/1905.02244
240
.. _ResNeXt: https://arxiv.org/abs/1611.05431
241
.. _MNASNet: https://arxiv.org/abs/1807.11626
242
.. _EfficientNet: https://arxiv.org/abs/1905.11946
243
.. _RegNet: https://arxiv.org/abs/2003.13678
244
.. _VisionTransformer: https://arxiv.org/abs/2010.11929
245
.. _ConvNeXt: https://arxiv.org/abs/2201.03545
246
.. _SwinTransformer: https://arxiv.org/abs/2103.14030
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
247
248
249

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
250
251
252
Alexnet
-------

253
254
255
256
257
.. autosummary::
    :toctree: generated/
    :template: function.rst

    alexnet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
258
259
260
261

VGG
---

262
263
264
265
266
267
268
269
270
271
272
273
.. autosummary::
    :toctree: generated/
    :template: function.rst

    vgg11
    vgg11_bn
    vgg13
    vgg13_bn
    vgg16
    vgg16_bn
    vgg19
    vgg19_bn
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
274
275
276
277
278


ResNet
------

279
280
281
282
283
284
285
286
287
.. autosummary::
    :toctree: generated/
    :template: function.rst

    resnet18
    resnet34
    resnet50
    resnet101
    resnet152
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
288
289
290
291

SqueezeNet
----------

292
293
294
295
296
297
.. autosummary::
    :toctree: generated/
    :template: function.rst

    squeezenet1_0
    squeezenet1_1
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
298

Sangwhan Moon's avatar
Sangwhan Moon committed
299
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
300
301
---------

302
303
304
305
306
307
308
309
.. autosummary::
    :toctree: generated/
    :template: function.rst

    densenet121
    densenet169
    densenet161
    densenet201
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
310
311
312
313

Inception v3
------------

314
315
316
317
318
.. autosummary::
    :toctree: generated/
    :template: function.rst

    inception_v3
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
319

320
321
322
GoogLeNet
------------

323
324
325
326
327
.. autosummary::
    :toctree: generated/
    :template: function.rst

    googlenet
328

Bar's avatar
Bar committed
329
330
331
ShuffleNet v2
-------------

332
333
334
335
336
337
338
339
.. autosummary::
    :toctree: generated/
    :template: function.rst

    shufflenet_v2_x0_5
    shufflenet_v2_x1_0
    shufflenet_v2_x1_5
    shufflenet_v2_x2_0
Bar's avatar
Bar committed
340

341
342
343
MobileNet v2
-------------

344
345
346
347
348
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mobilenet_v2
349

350
351
352
MobileNet v3
-------------

353
354
355
356
357
358
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mobilenet_v3_large
    mobilenet_v3_small
359

360
ResNext
361
-------
362

363
364
365
366
367
368
.. autosummary::
    :toctree: generated/
    :template: function.rst

    resnext50_32x4d
    resnext101_32x8d
369

370
371
372
Wide ResNet
-----------

373
374
375
376
377
378
.. autosummary::
    :toctree: generated/
    :template: function.rst

    wide_resnet50_2
    wide_resnet101_2
379

380
381
382
MNASNet
--------

383
384
385
386
387
388
389
390
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mnasnet0_5
    mnasnet0_75
    mnasnet1_0
    mnasnet1_3
391

392
393
394
EfficientNet
------------

395
396
397
398
399
400
401
402
403
404
405
406
.. autosummary::
    :toctree: generated/
    :template: function.rst

    efficientnet_b0
    efficientnet_b1
    efficientnet_b2
    efficientnet_b3
    efficientnet_b4
    efficientnet_b5
    efficientnet_b6
    efficientnet_b7
407
408
409
    efficientnet_v2_s
    efficientnet_v2_m
    efficientnet_v2_l
410

411
412
413
RegNet
------------

414
415
416
417
418
419
420
421
422
423
424
.. autosummary::
    :toctree: generated/
    :template: function.rst

    regnet_y_400mf
    regnet_y_800mf
    regnet_y_1_6gf
    regnet_y_3_2gf
    regnet_y_8gf
    regnet_y_16gf
    regnet_y_32gf
425
    regnet_y_128gf
426
427
428
429
430
431
432
    regnet_x_400mf
    regnet_x_800mf
    regnet_x_1_6gf
    regnet_x_3_2gf
    regnet_x_8gf
    regnet_x_16gf
    regnet_x_32gf
433

434
435
436
437
438
439
440
441
442
443
444
VisionTransformer
-----------------

.. autosummary::
    :toctree: generated/
    :template: function.rst

    vit_b_16
    vit_b_32
    vit_l_16
    vit_l_32
445
    vit_h_14
446

447
448
449
450
451
452
453
454
455
456
457
458
ConvNeXt
--------

.. autosummary::
    :toctree: generated/
    :template: function.rst

    convnext_tiny
    convnext_small
    convnext_base
    convnext_large

459
SwinTransformer
Aditya Oke's avatar
Aditya Oke committed
460
---------------
461
462
463
464
465
466
467

.. autosummary::
    :toctree: generated/
    :template: function.rst

    swin_t

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
Quantized Models
----------------

The following architectures provide support for INT8 quantized models. You can get
a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    googlenet = models.quantization.googlenet()
    inception_v3 = models.quantization.inception_v3()
    mobilenet_v2 = models.quantization.mobilenet_v2()
    mobilenet_v3_large = models.quantization.mobilenet_v3_large()
    resnet18 = models.quantization.resnet18()
    resnet50 = models.quantization.resnet50()
    resnext101_32x8d = models.quantization.resnext101_32x8d()
    shufflenet_v2_x0_5 = models.quantization.shufflenet_v2_x0_5()
    shufflenet_v2_x1_0 = models.quantization.shufflenet_v2_x1_0()

Obtaining a pre-trained quantized model can be done with a few lines of code:

.. code:: python

    import torchvision.models as models
492
    model = models.quantization.mobilenet_v2(weights=MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1, quantize=True)
493
494
495
496
497
498
499
500
501
502
503
    model.eval()
    # run the model with quantized inputs and weights
    out = model(torch.rand(1, 3, 224, 224))

We provide pre-trained quantized weights for the following models:

================================  =============  =============
Model                             Acc@1          Acc@5
================================  =============  =============
MobileNet V2                      71.658         90.150
MobileNet V3 Large                73.004         90.858
504
ShuffleNet V2 x0.5                57.972         79.780
505
506
507
ShuffleNet V2 x1.0                68.360         87.582
ShuffleNet V2 x1.5                72.052         90.700
ShuffleNet V2 x2.0                75.354         92.488
508
509
510
511
512
513
514
ResNet 18                         69.494         88.882
ResNet 50                         75.920         92.814
ResNext 101 32x8d                 78.986         94.480
Inception V3                      77.176         93.354
GoogleNet                         69.826         89.404
================================  =============  =============

515
516
517
518

Semantic Segmentation
=====================

519
520
521
The models subpackage contains definitions for the following model
architectures for semantic segmentation:

522
- `FCN ResNet50, ResNet101 <https://arxiv.org/abs/1411.4038>`_
523
524
- `DeepLabV3 ResNet50, ResNet101, MobileNetV3-Large <https://arxiv.org/abs/1706.05587>`_
- `LR-ASPP MobileNetV3-Large <https://arxiv.org/abs/1905.02244>`_
525

526
527
528
529
530
As with image classification models, all pre-trained models expect input images normalized in the same way.
The images have to be loaded in to a range of ``[0, 1]`` and then normalized using
``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
They have been trained on images resized such that their minimum size is 520.

531
532
For details on how to plot the masks of such models, you may refer to :ref:`semantic_seg_output`.

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are
present in the Pascal VOC dataset. You can see more information on how the subset has been selected in
``references/segmentation/coco_utils.py``. The classes that the pre-trained model outputs are the following,
in order:

  .. code-block:: python

      ['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
       'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
       'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

================================  =============  ====================
Network                           mean IoU       global pixelwise acc
================================  =============  ====================
549
FCN ResNet50                      60.5           91.4
550
FCN ResNet101                     63.7           91.9
551
DeepLabV3 ResNet50                66.4           92.4
552
DeepLabV3 ResNet101               67.4           92.4
553
554
DeepLabV3 MobileNetV3-Large       60.3           91.2
LR-ASPP MobileNetV3-Large         57.9           91.2
555
556
557
558
559
560
================================  =============  ====================


Fully Convolutional Networks
----------------------------

561
562
563
564
565
566
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.fcn_resnet50
    torchvision.models.segmentation.fcn_resnet101
567
568
569
570
571


DeepLabV3
---------

572
573
574
575
576
577
578
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.deeplabv3_resnet50
    torchvision.models.segmentation.deeplabv3_resnet101
    torchvision.models.segmentation.deeplabv3_mobilenet_v3_large
579
580
581
582
583


LR-ASPP
-------

584
585
586
587
588
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.lraspp_mobilenet_v3_large
589

590
.. _object_det_inst_seg_pers_keypoint_det:
591
592
593
594

Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

595
596
597
The models subpackage contains definitions for the following model
architectures for detection:

598
- `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_
Hu Ye's avatar
Hu Ye committed
599
- `FCOS <https://arxiv.org/abs/1904.01355>`_
600
601
602
- `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_
- `RetinaNet <https://arxiv.org/abs/1708.02002>`_
- `SSD <https://arxiv.org/abs/1512.02325>`_
603
- `SSDlite <https://arxiv.org/abs/1801.04381>`_
604

605
606
607
608
609
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision.

The models expect a list of ``Tensor[C, H, W]``, in the range ``0-1``.
610
The models internally resize the images but the behaviour varies depending
611
612
on the model. Check the constructor of the models for more information. The
output format of such models is illustrated in :ref:`instance_seg_output`.
613
614
615
616
617
618
619
620
621


For object detection and instance segmentation, the pre-trained
models return the predictions of the following classes:

  .. code-block:: python

      COCO_INSTANCE_CATEGORY_NAMES = [
          '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
622
623
          'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
          'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
624
          'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
625
626
627
628
629
630
631
632
          'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
          'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
          'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
          'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
          'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
          'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
          'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
          'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
633
634
635
636
637
638
      ]


Here are the summary of the accuracies for the models trained on
the instances set of COCO train2017 and evaluated on COCO val2017.

639
640
641
642
643
644
======================================  =======  ========  ===========
Network                                 box AP   mask AP   keypoint AP
======================================  =======  ========  ===========
Faster R-CNN ResNet-50 FPN              37.0     -         -
Faster R-CNN MobileNetV3-Large FPN      32.8     -         -
Faster R-CNN MobileNetV3-Large 320 FPN  22.8     -         -
Hu Ye's avatar
Hu Ye committed
645
FCOS ResNet-50 FPN                      39.2     -         -
646
RetinaNet ResNet-50 FPN                 36.4     -         -
647
648
SSD300 VGG16                            25.1     -         -
SSDlite320 MobileNetV3-Large            21.3     -         -
649
650
Mask R-CNN ResNet-50 FPN                37.9     34.6      -
======================================  =======  ========  ===========
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

For person keypoint detection, the accuracies for the pre-trained
models are as follows

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Keypoint R-CNN ResNet-50 FPN      54.6     -         65.0
================================  =======  ========  ===========

For person keypoint detection, the pre-trained model return the
keypoints in the following order:

  .. code-block:: python

    COCO_PERSON_KEYPOINT_NAMES = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]

686
687
688
689
690
691
Runtime characteristics
-----------------------

The implementations of the models for object detection, instance segmentation
and keypoint detection are efficient.

692
693
694
In the following table, we use 8 GPUs to report the results. During training,
we use a batch size of 2 per GPU for all models except SSD which uses 4
and SSDlite which uses 24. During testing a batch size  of 1 is used.
695
696
697
698
699

For test time, we report the time for the model evaluation and postprocessing
(including mask pasting in image), but not the time for computing the
precision-recall.

700
701
702
703
704
705
======================================  ===================  ==================  ===========
Network                                 train time (s / it)  test time (s / it)  memory (GB)
======================================  ===================  ==================  ===========
Faster R-CNN ResNet-50 FPN              0.2288               0.0590              5.2
Faster R-CNN MobileNetV3-Large FPN      0.1020               0.0415              1.0
Faster R-CNN MobileNetV3-Large 320 FPN  0.0978               0.0376              0.6
Hu Ye's avatar
Hu Ye committed
706
FCOS ResNet-50 FPN                      0.1450               0.0539              3.3
707
RetinaNet ResNet-50 FPN                 0.2514               0.0939              4.1
708
709
SSD300 VGG16                            0.2093               0.0744              1.5
SSDlite320 MobileNetV3-Large            0.1773               0.0906              1.5
710
711
712
Mask R-CNN ResNet-50 FPN                0.2728               0.0903              5.4
Keypoint R-CNN ResNet-50 FPN            0.3789               0.1242              6.8
======================================  ===================  ==================  ===========
713
714
715
716
717


Faster R-CNN
------------

718
719
720
721
722
723
724
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.fasterrcnn_resnet50_fpn
    torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn
    torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn
725

Hu Ye's avatar
Hu Ye committed
726
727
728
729
730
731
732
733
734
FCOS
----

.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.fcos_resnet50_fpn

735

736
RetinaNet
737
---------
738

739
740
741
742
743
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.retinanet_resnet50_fpn
744
745


746
SSD
747
---
748

749
750
751
752
753
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.ssd300_vgg16
754
755


756
SSDlite
757
-------
758

759
760
761
762
763
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.ssdlite320_mobilenet_v3_large
764
765


766
767
768
Mask R-CNN
----------

769
770
771
772
773
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.maskrcnn_resnet50_fpn
774
775
776
777
778


Keypoint R-CNN
--------------

779
780
781
782
783
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.keypointrcnn_resnet50_fpn
784

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

Video classification
====================

We provide models for action recognition pre-trained on Kinetics-400.
They have all been trained with the scripts provided in ``references/video_classification``.

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W),
where H and W are expected to be 112, and T is a number of video frames in a clip.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.43216, 0.394666, 0.37645]`` and ``std = [0.22803, 0.22145, 0.216989]``.


.. note::
  The normalization parameters are different from the image classification ones, and correspond
  to the mean and std from Kinetics-400.

.. note::
  For now, normalization code can be found in ``references/video_classification/transforms.py``,
  see the ``Normalize`` function there. Note that it differs from standard normalization for
  images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

================================  =============   =============
Network                           Clip acc@1      Clip acc@5
================================  =============   =============
ResNet 3D 18                      52.75           75.45
ResNet MC 18                      53.90           76.29
ResNet (2+1)D                     57.50           78.81
================================  =============   =============


ResNet 3D
----------

822
823
824
825
826
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.r3d_18
827
828
829
830

ResNet Mixed Convolution
------------------------

831
832
833
834
835
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.mc3_18
836
837
838
839

ResNet (2+1)D
-------------

840
841
842
843
844
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.r2plus1d_18
845
846
847
848
849
850
851
852
853
854
855
856
857

Optical flow
============

Raft
----

.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.optical_flow.raft_large
    torchvision.models.optical_flow.raft_small