test_functional_tensor.py 50.6 KB
Newer Older
1
import colorsys
2
import itertools
3
import math
4
import os
5
import re
6
from typing import Sequence
7

vfdev's avatar
vfdev committed
8
import numpy as np
9
import pytest
vfdev's avatar
vfdev committed
10
import torch
11
import torchvision.transforms as T
12
13
14
import torchvision.transforms.functional as F
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional_tensor as F_t
Nicolas Hug's avatar
Nicolas Hug committed
15
16
17
18
19
20
21
22
from common_utils import (
    cpu_and_gpu,
    needs_cuda,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
    _test_fn_on_batch,
23
    assert_equal,
Nicolas Hug's avatar
Nicolas Hug committed
24
)
25
from torchvision.transforms import InterpolationMode
26

27
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
28
29


30
31
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("fn", [F.get_image_size, F.get_image_num_channels])
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def test_image_sizes(device, fn):
    script_F = torch.jit.script(fn)

    img_tensor, pil_img = _create_data(16, 18, 3, device=device)
    value_img = fn(img_tensor)
    value_pil_img = fn(pil_img)
    assert value_img == value_pil_img

    value_img_script = script_F(img_tensor)
    assert value_img == value_img_script

    batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
    value_img_batch = fn(batch_tensors)
    assert value_img == value_img_batch


48
49
50
51
52
53
54
55
@needs_cuda
def test_scale_channel():
    """Make sure that _scale_channel gives the same results on CPU and GPU as
    histc or bincount are used depending on the device.
    """
    # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
    # only use bincount and remove that test.
    size = (1_000,)
56
    img_chan = torch.randint(0, 256, size=size).to("cpu")
57
    scaled_cpu = F_t._scale_channel(img_chan)
58
59
    scaled_cuda = F_t._scale_channel(img_chan.to("cuda"))
    assert_equal(scaled_cpu, scaled_cuda.to("cpu"))
60

61

62
63
64
65
66
67
class TestRotate:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_rotate = torch.jit.script(F.rotate)
    IMG_W = 26

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, IMG_W), (32, IMG_W)])
    @pytest.mark.parametrize(
        "center",
        [
            None,
            (int(IMG_W * 0.3), int(IMG_W * 0.4)),
            [int(IMG_W * 0.5), int(IMG_W * 0.6)],
        ],
    )
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("angle", range(-180, 180, 17))
    @pytest.mark.parametrize("expand", [True, False])
    @pytest.mark.parametrize(
        "fill",
        [
            None,
            [0, 0, 0],
            (1, 2, 3),
            [255, 255, 255],
            [
                1,
            ],
            (2.0,),
        ],
    )
    @pytest.mark.parametrize("fn", [F.rotate, scripted_rotate])
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and torch.device(device).type == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
        out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

114
115
116
        assert (
            out_tensor.shape == out_pil_tensor.shape
        ), f"{(height, width, NEAREST, dt, angle, expand, center)}: {out_tensor.shape} vs {out_pil_tensor.shape}"
117
118
119
120
121
122
123

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, (
            f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
            f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
124
125
            f"{out_pil_tensor[0, :7, :7]}"
        )
126

127
128
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
129
130
131
132
133
134
135
136
137
138
    def test_rotate_batch(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        center = (20, 22)
139
        _test_fn_on_batch(batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center)
140
141
142
143

    def test_rotate_deprecation_resample(self):
        tensor, _ = _create_data(26, 26)
        # assert deprecation warning and non-BC
144
145
146
147
148
149
150
        with pytest.warns(
            UserWarning,
            match=re.escape(
                "The parameter 'resample' is deprecated since 0.12 and will be removed 0.14. "
                "Please use 'interpolation' instead."
            ),
        ):
151
152
153
154
155
156
157
158
159
160
161
162
163
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            assert_equal(res1, res2)

    def test_rotate_interpolation_type(self):
        tensor, _ = _create_data(26, 26)
        # assert changed type warning
        with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            assert_equal(res1, res2)


164
165
166
167
168
class TestAffine:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_affine = torch.jit.script(F.affine)

169
170
171
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def test_identity_map(self, device, height, width, dt):
        # Tests on square and rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

186
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
187
188
189
        out_tensor = self.scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
190
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "angle, config",
        [
            (90, {"k": 1, "dims": (-1, -2)}),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, {"k": -1, "dims": (-1, -2)}),
            (180, {"k": 2, "dims": (-1, -2)}),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def test_square_rotations(self, device, height, width, dt, angle, config, fn):
        # 2) Test rotation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

224
        out_tensor = fn(tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
225
        if config is not None:
226
            assert_equal(torch.rot90(tensor, **config), out_tensor)
227
228
229
230
231
232
233

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 6% of different pixels
234
        assert ratio_diff_pixels < 0.06
235

236
237
238
239
240
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("angle", [90, 45, 15, -30, -60, -120])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
241
242
    @pytest.mark.parametrize("center", [None, [0, 0]])
    def test_rect_rotations(self, device, height, width, dt, angle, fn, center):
243
244
245
246
247
248
249
250
251
252
253
        # Tests on rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
254
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
255
256
257
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

258
259
260
        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
        ).cpu()
261
262
263
264
265
266
267

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
268
        assert ratio_diff_pixels < 0.03
269

270
271
272
273
274
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("t", [[10, 12], (-12, -13)])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def test_translations(self, device, height, width, dt, t, fn):
        # 3) Test translation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        _assert_equal_tensor_to_pil(out_tensor, out_pil_img)

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "a, t, s, sh, f",
        [
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (
                85,
                (10, -10),
                0.7,
                [0.0, 0.0],
                [
                    1,
                ],
            ),
            (
                0,
                [0, 0],
                1.0,
                [
                    35.0,
                ],
                (2.0,),
            ),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
        # 4) Test rotation + translation + scale + shear
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(f[0]) if f is not None and len(f) == 1 else f
        out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
        tol = 0.06 if device == "cuda" else 0.05
354
        assert ratio_diff_pixels < tol
355

356
357
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
358
359
360
361
362
363
364
365
366
    def test_batches(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

367
        _test_fn_on_batch(batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0])
368

369
    @pytest.mark.parametrize("device", cpu_and_gpu())
370
371
372
373
    def test_warnings(self, device):
        tensor, pil_img = _create_data(26, 26, device=device)

        # assert deprecation warning and non-BC
374
375
376
377
378
379
380
        with pytest.warns(
            UserWarning,
            match=re.escape(
                "The parameter 'resample' is deprecated since 0.12 and will be removed in 0.14. "
                "Please use 'interpolation' instead."
            ),
        ):
381
382
383
384
385
386
387
388
389
390
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

        # assert changed type warning
        with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

391
392
393
394
395
396
397
        with pytest.warns(
            UserWarning,
            match=re.escape(
                "The parameter 'fillcolor' is deprecated since 0.12 and will be removed in 0.14. "
                "Please use 'fill' instead."
            ),
        ):
398
399
400
401
402
403
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
            # we convert the PIL images to numpy as assert_equal doesn't work on PIL images.
            assert_equal(np.asarray(res1), np.asarray(res2))


404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
423
        points += [(dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n)) for i in range(n)]
424
425
426
    return dims_and_points


427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
    (
        None,
        [0, 0, 0],
        [1, 2, 3],
        [255, 255, 255],
        [
            1,
        ],
        (2.0,),
    ),
)
@pytest.mark.parametrize("fn", [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
444
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
445
446
447
448
449
450
451

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
452
    tensor, pil_img = _create_data(*data_dims, device=device)
453
454
455
456
457
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
458
459
460
    out_pil_img = F.perspective(
        pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill_pil
    )
461
462
463
464
465
466
467
468
469
470
471
472
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


473
474
475
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
476
def test_perspective_batch(device, dims_and_points, dt):
477
478
479
480
481
482
483

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
484
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
485
486
487
488
489
490
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
491
    _test_fn_on_batch(
492
493
494
495
496
497
        batch_tensors,
        F.perspective,
        scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints,
        endpoints=epoints,
        interpolation=NEAREST,
498
499
500
    )


Nicolas Hug's avatar
Nicolas Hug committed
501
def test_perspective_interpolation_warning():
502
503
504
505
    # assert changed type warning
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))
Nicolas Hug's avatar
Nicolas Hug committed
506
    with pytest.warns(UserWarning, match="Argument interpolation should be of type InterpolationMode"):
507
508
        res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
        res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
Nicolas Hug's avatar
Nicolas Hug committed
509
        assert_equal(res1, res2)
510
511


512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "size",
    [
        32,
        26,
        [
            32,
        ],
        [32, 32],
        (32, 32),
        [26, 35],
    ],
)
@pytest.mark.parametrize("max_size", [None, 34, 40, 1000])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST])
Nicolas Hug's avatar
Nicolas Hug committed
529
def test_resize(device, dt, size, max_size, interpolation):
530
531
532
533
534
535
536
537
538
539

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
540
541
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
542
543
544
545
546
547
548
549
550
551
552

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

553
554
555
    if interpolation not in [
        NEAREST,
    ]:
556
557
558
559
560
561
562
563
564
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
Nicolas Hug's avatar
Nicolas Hug committed
565
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=8.0)
566
567

    if isinstance(size, int):
568
569
570
        script_size = [
            size,
        ]
571
572
573
    else:
        script_size = size

574
    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, max_size=max_size)
575
576
    assert_equal(resized_tensor, resize_result)

577
    _test_fn_on_batch(batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size)
578
579


580
@pytest.mark.parametrize("device", cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
581
def test_resize_asserts(device):
582

Nicolas Hug's avatar
Nicolas Hug committed
583
    tensor, pil_img = _create_data(26, 36, device=device)
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        res1 = F.resize(tensor, size=32, interpolation=2)

    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


600
601
602
603
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[96, 72], [96, 420], [420, 72]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
604
def test_resize_antialias(device, dt, size, interpolation):
605
606
607
608
609

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

610
    torch.manual_seed(12)
611
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
612
    tensor, pil_img = _create_data(320, 290, device=device)
613
614
615
616
617
618
619
620

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

Nicolas Hug's avatar
Nicolas Hug committed
621
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
622
623
624
625
626
627

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

628
    _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}")
629
630
631
632
633
634
635
636
637

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
638
    _assert_approx_equal_tensor_to_pil(
639
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max", msg=f"{size}, {interpolation}, {dt}"
640
641
642
    )

    if isinstance(size, int):
643
644
645
        script_size = [
            size,
        ]
646
647
648
649
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
650
    assert_equal(resized_tensor, resize_result)
651
652


653
@needs_cuda
654
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
655
def test_assert_resize_antialias(interpolation):
656
657
658
659

    # Checks implementation on very large scales
    # and catch TORCH_CHECK inside interpolate_aa_kernels.cu
    torch.manual_seed(12)
Nicolas Hug's avatar
Nicolas Hug committed
660
    tensor, pil_img = _create_data(1000, 1000, device="cuda")
661
662
663
664
665

    with pytest.raises(RuntimeError, match=r"Max supported scale factor is"):
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


666
667
668
669
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[10, 7], [10, 42], [42, 7]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
670
def test_interpolate_antialias_backward(device, dt, size, interpolation):
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    torch.manual_seed(12)
    if interpolation == BILINEAR:
        forward_op = torch.ops.torchvision._interpolate_bilinear2d_aa
        backward_op = torch.ops.torchvision._interpolate_bilinear2d_aa_backward
    elif interpolation == BICUBIC:
        forward_op = torch.ops.torchvision._interpolate_bicubic2d_aa
        backward_op = torch.ops.torchvision._interpolate_bicubic2d_aa_backward

    class F(torch.autograd.Function):
        @staticmethod
        def forward(ctx, i):
            result = forward_op(i, size, False)
            ctx.save_for_backward(i, result)
            return result

        @staticmethod
        def backward(ctx, grad_output):
            i, result = ctx.saved_tensors
            ishape = i.shape
            oshape = result.shape[2:]
            return backward_op(grad_output, oshape, ishape, False)

698
    x = (torch.rand(1, 32, 29, 3, dtype=torch.double, device=device).permute(0, 3, 1, 2).requires_grad_(True),)
699
700
    assert torch.autograd.gradcheck(F.apply, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)

701
    x = (torch.rand(1, 3, 32, 29, dtype=torch.double, device=device, requires_grad=True),)
702
703
704
    assert torch.autograd.gradcheck(F.apply, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)


705
706
707
def check_functional_vs_PIL_vs_scripted(
    fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
708
709
710

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
711
712
    tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
731
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
732
733
734
735
736
737
738

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
739
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
740
741


742
743
744
745
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
@pytest.mark.parametrize("channels", [1, 3])
746
def test_adjust_brightness(device, dtype, config, channels):
747
748
749
750
751
752
753
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
754
        channels,
755
756
757
    )


758
759
760
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
761
def test_invert(device, dtype, channels):
762
    check_functional_vs_PIL_vs_scripted(
763
        F.invert, F_pil.invert, F_t.invert, {}, device, dtype, channels, tol=1.0, agg_method="max"
764
765
766
    )


767
768
769
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"bits": bits} for bits in range(0, 8)])
@pytest.mark.parametrize("channels", [1, 3])
770
def test_posterize(device, config, channels):
771
772
773
774
775
776
777
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
778
        channels=channels,
779
780
781
782
783
        tol=1.0,
        agg_method="max",
    )


784
785
786
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
@pytest.mark.parametrize("channels", [1, 3])
787
def test_solarize1(device, config, channels):
788
789
790
791
792
793
794
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
795
        channels=channels,
796
797
798
799
800
        tol=1.0,
        agg_method="max",
    )


801
802
803
804
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
@pytest.mark.parametrize("channels", [1, 3])
805
def test_solarize2(device, dtype, config, channels):
806
807
808
809
810
811
812
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
813
        channels,
814
815
816
817
818
        tol=1.0,
        agg_method="max",
    )


puhuk's avatar
puhuk committed
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [0.0, 0.25, 0.5, 0.75, 1.0])
def test_solarize_threshold1_bound(threshold, device):
    img = torch.rand((3, 12, 23)).to(device)
    F_t.solarize(img, threshold)


@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [1.5])
def test_solarize_threshold1_upper_bound(threshold, device):
    img = torch.rand((3, 12, 23)).to(device)
    with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
        F_t.solarize(img, threshold)


@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [0, 64, 128, 192, 255])
def test_solarize_threshold2_bound(threshold, device):
    img = torch.randint(0, 256, (3, 12, 23)).to(device)
    F_t.solarize(img, threshold)


@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [260])
def test_solarize_threshold2_upper_bound(threshold, device):
    img = torch.randint(0, 256, (3, 12, 23)).to(device)
    with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
        F_t.solarize(img, threshold)


849
850
851
852
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
853
def test_adjust_sharpness(device, dtype, config, channels):
854
855
856
857
858
859
860
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
861
        channels,
862
863
864
    )


865
866
867
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
868
def test_autocontrast(device, dtype, channels):
869
    check_functional_vs_PIL_vs_scripted(
870
        F.autocontrast, F_pil.autocontrast, F_t.autocontrast, {}, device, dtype, channels, tol=1.0, agg_method="max"
871
872
873
    )


874
875
876
877
878
879
880
881
882
883
884
885
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast_equal_minmax(device, dtype, channels):
    a = _create_data_batch(32, 32, num_samples=1, channels=channels, device=device)
    a = a / 2.0 + 0.3
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()

    a[0, 0] = 0.7
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()


886
887
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
888
def test_equalize(device, channels):
889
    torch.use_deterministic_algorithms(False)
890
891
892
893
894
895
896
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
897
        channels=channels,
898
899
900
901
902
        tol=1.0,
        agg_method="max",
    )


903
904
905
906
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
907
def test_adjust_contrast(device, dtype, config, channels):
908
    check_functional_vs_PIL_vs_scripted(
909
        F.adjust_contrast, F_pil.adjust_contrast, F_t.adjust_contrast, config, device, dtype, channels
910
911
912
    )


913
914
915
916
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
917
def test_adjust_saturation(device, dtype, config, channels):
918
    check_functional_vs_PIL_vs_scripted(
919
        F.adjust_saturation, F_pil.adjust_saturation, F_t.adjust_saturation, config, device, dtype, channels
920
921
922
    )


923
924
925
926
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
@pytest.mark.parametrize("channels", [1, 3])
927
def test_adjust_hue(device, dtype, config, channels):
928
    check_functional_vs_PIL_vs_scripted(
929
        F.adjust_hue, F_pil.adjust_hue, F_t.adjust_hue, config, device, dtype, channels, tol=16.1, agg_method="max"
930
931
932
    )


933
934
935
936
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
@pytest.mark.parametrize("channels", [1, 3])
937
def test_adjust_gamma(device, dtype, config, channels):
938
939
940
941
942
943
944
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
945
        channels,
946
947
948
    )


949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "pad",
    [
        2,
        [
            3,
        ],
        [0, 3],
        (3, 3),
        [4, 2, 4, 3],
    ],
)
@pytest.mark.parametrize(
    "config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "constant", "fill": 20},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
        {"padding_mode": "symmetric"},
    ],
)
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
def test_pad(device, dt, pad, config):
    script_fn = torch.jit.script(F.pad)
    tensor, pil_img = _create_data(7, 8, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    pad_tensor = F_t.pad(tensor, pad, **config)
    pad_pil_img = F_pil.pad(pil_img, pad, **config)

    pad_tensor_8b = pad_tensor
    # we need to cast to uint8 to compare with PIL image
    if pad_tensor_8b.dtype != torch.uint8:
        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

996
    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg=f"{pad}, {config}")
997
998

    if isinstance(pad, int):
999
1000
1001
        script_pad = [
            pad,
        ]
1002
1003
1004
    else:
        script_pad = pad
    pad_tensor_script = script_fn(tensor, script_pad, **config)
1005
    assert_equal(pad_tensor, pad_tensor_script, msg=f"{pad}, {config}")
1006
1007
1008
1009

    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)


1010
1011
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("mode", [NEAREST, BILINEAR, BICUBIC])
1012
1013
1014
1015
1016
1017
def test_resized_crop(device, mode):
    # test values of F.resized_crop in several cases:
    # 1) resize to the same size, crop to the same size => should be identity
    tensor, _ = _create_data(26, 36, device=device)

    out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
1018
    assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
1019
1020
1021
1022
1023
1024
1025
1026

    # 2) resize by half and crop a TL corner
    tensor, _ = _create_data(26, 36, device=device)
    out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
    expected_out_tensor = tensor[:, :20:2, :30:2]
    assert_equal(
        expected_out_tensor,
        out_tensor,
1027
        msg=f"{expected_out_tensor[0, :10, :10]} vs {out_tensor[0, :10, :10]}",
1028
1029
1030
1031
1032
1033
1034
1035
    )

    batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
    _test_fn_on_batch(
        batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
    )


1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "func, args",
    [
        (F_t.get_image_size, ()),
        (F_t.vflip, ()),
        (F_t.hflip, ()),
        (F_t.crop, (1, 2, 4, 5)),
        (F_t.adjust_brightness, (0.0,)),
        (F_t.adjust_contrast, (1.0,)),
        (F_t.adjust_hue, (-0.5,)),
        (F_t.adjust_saturation, (2.0,)),
        (
            F_t.pad,
            (
                [
                    2,
                ],
                2,
                "constant",
            ),
        ),
        (F_t.resize, ([10, 11],)),
        (
            F_t.perspective,
            (
                [
                    0.2,
                ]
            ),
        ),
        (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
        (F_t.invert, ()),
        (F_t.posterize, (0,)),
        (F_t.solarize, (0.3,)),
        (F_t.adjust_sharpness, (0.3,)),
        (F_t.autocontrast, ()),
        (F_t.equalize, ()),
    ],
)
1076
1077
1078
1079
1080
1081
1082
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


1083
@pytest.mark.parametrize("device", cpu_and_gpu())
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


1100
@pytest.mark.parametrize("device", cpu_and_gpu())
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "top, left, height, width",
    [
        (1, 2, 4, 5),  # crop inside top-left corner
        (2, 12, 3, 4),  # crop inside top-right corner
        (8, 3, 5, 6),  # crop inside bottom-left corner
        (8, 11, 4, 3),  # crop inside bottom-right corner
    ],
)
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


1144
1145
1146
1147
1148
1149
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("image_size", ("small", "large"))
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("ksize", [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize("sigma", [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize("fn", [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
1166
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "gaussian_blur_opencv_results.pt")
1167
1168
    true_cv2_results = torch.load(p)

1169
1170
1171
1172
    if image_size == "small":
        tensor = (
            torch.from_numpy(np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))).permute(2, 0, 1).to(device)
        )
1173
    else:
1174
        tensor = torch.from_numpy(np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))).to(device)
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
1186
    gt_key = f"{shape[-2]}_{shape[-1]}_{shape[-3]}__{_ksize[0]}_{_ksize[1]}_{_sigma}"
1187
1188
1189
    if gt_key not in true_cv2_results:
        return

1190
1191
1192
    true_out = (
        torch.tensor(true_cv2_results[gt_key]).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)
    )
1193
1194

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
1195
    torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg=f"{ksize}, {sigma}")
1196
1197


1198
@pytest.mark.parametrize("device", cpu_and_gpu())
1199
1200
1201
1202
1203
1204
1205
1206
def test_hsv2rgb(device):
    scripted_fn = torch.jit.script(F_t._hsv2rgb)
    shape = (3, 100, 150)
    for _ in range(10):
        hsv_img = torch.rand(*shape, dtype=torch.float, device=device)
        rgb_img = F_t._hsv2rgb(hsv_img)
        ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)

1207
1208
1209
1210
1211
        (
            h,
            s,
            v,
        ) = hsv_img.unbind(0)
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        h = h.flatten().cpu().numpy()
        s = s.flatten().cpu().numpy()
        v = v.flatten().cpu().numpy()

        rgb = []
        for h1, s1, v1 in zip(h, s, v):
            rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
        colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=device)
        torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)

        s_rgb_img = scripted_fn(hsv_img)
        torch.testing.assert_close(rgb_img, s_rgb_img)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)


1229
@pytest.mark.parametrize("device", cpu_and_gpu())
1230
1231
1232
1233
1234
1235
1236
1237
def test_rgb2hsv(device):
    scripted_fn = torch.jit.script(F_t._rgb2hsv)
    shape = (3, 150, 100)
    for _ in range(10):
        rgb_img = torch.rand(*shape, dtype=torch.float, device=device)
        hsv_img = F_t._rgb2hsv(rgb_img)
        ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)

1238
1239
1240
1241
1242
        (
            r,
            g,
            b,
        ) = rgb_img.unbind(dim=-3)
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
        r = r.flatten().cpu().numpy()
        g = g.flatten().cpu().numpy()
        b = b.flatten().cpu().numpy()

        hsv = []
        for r1, g1, b1 in zip(r, g, b):
            hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

        colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=device)

        ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
        colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

        max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
        max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
        max_diff = max(max_diff_h, max_diff_sv)
        assert max_diff < 1e-5

        s_hsv_img = scripted_fn(rgb_img)
        torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)


1268
1269
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_output_channels", (3, 1))
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
def test_rgb_to_grayscale(device, num_output_channels):
    script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
    gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

    _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

    s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
    assert_equal(s_gray_tensor, gray_tensor)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)


1287
@pytest.mark.parametrize("device", cpu_and_gpu())
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
def test_center_crop(device):
    script_center_crop = torch.jit.script(F.center_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_image = F.center_crop(pil_img, [10, 11])

    cropped_tensor = F.center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    cropped_tensor = script_center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])


1305
@pytest.mark.parametrize("device", cpu_and_gpu())
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
def test_five_crop(device):
    script_five_crop = torch.jit.script(F.five_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.five_crop(pil_img, [10, 11])

    cropped_tensors = F.five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1339
@pytest.mark.parametrize("device", cpu_and_gpu())
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
def test_ten_crop(device):
    script_ten_crop = torch.jit.script(F.ten_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.ten_crop(pil_img, [10, 11])

    cropped_tensors = F.ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1373
if __name__ == "__main__":
1374
    pytest.main([__file__])