test_onnx.py 22.3 KB
Newer Older
1
2
3
4
5
6
7
8
# onnxruntime requires python 3.5 or above
try:
    # This import should be before that of torch
    # see https://github.com/onnx/onnx/issues/2394#issuecomment-581638840
    import onnxruntime
except ImportError:
    onnxruntime = None

9
from common_utils import set_rng_seed
10
11
12
import io
import torch
from torchvision import ops
13
from torchvision import models
14
from torchvision.models.detection.image_list import ImageList
15
from torchvision.models.detection.transform import GeneralizedRCNNTransform
16
17
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
18
19
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
20
from torchvision.models.detection.mask_rcnn import MaskRCNNHeads, MaskRCNNPredictor
21

22
23
from collections import OrderedDict

24
import unittest
25
from torchvision.ops._register_onnx_ops import _onnx_opset_version
26
27
28
29
30
31
32
33


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

34
35
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
                  output_names=None, input_names=None):
36
37
38
        model.eval()

        onnx_io = io.BytesIO()
39
40
41
42
        if isinstance(inputs_list[0][-1], dict):
            torch_onnx_input = inputs_list[0] + ({},)
        else:
            torch_onnx_input = inputs_list[0]
43
        # export to onnx with the first input
44
        torch.onnx.export(model, torch_onnx_input, onnx_io,
45
46
                          do_constant_folding=do_constant_folding, opset_version=_onnx_opset_version,
                          dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
47
        # validate the exported model with onnx runtime
48
49
50
51
52
53
54
55
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
56
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
57

58
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
76

77
        for i in range(0, len(outputs)):
78
79
80
81
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
82
                    self.assertIn("(0.00%)", str(error), str(error))
83
                else:
84
                    raise
85
86

    def test_nms(self):
87
88
89
90
        num_boxes = 100
        boxes = torch.rand(num_boxes, 4)
        boxes[:, 2:] += boxes[:, :2]
        scores = torch.randn(num_boxes)
91
92
93
94
95

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

96
        self.run_model(Module(), [(boxes, scores)])
97

98
99
100
101
102
103
104
105
106
107
108
109
110
    def test_batched_nms(self):
        num_boxes = 100
        boxes = torch.rand(num_boxes, 4)
        boxes[:, 2:] += boxes[:, :2]
        scores = torch.randn(num_boxes)
        idxs = torch.randint(0, 5, size=(num_boxes,))

        class Module(torch.nn.Module):
            def forward(self, boxes, scores, idxs):
                return ops.batched_nms(boxes, scores, idxs, 0.5)

        self.run_model(Module(), [(boxes, scores, idxs)])

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def test_clip_boxes_to_image(self):
        boxes = torch.randn(5, 4) * 500
        boxes[:, 2:] += boxes[:, :2]
        size = torch.randn(200, 300)

        size_2 = torch.randn(300, 400)

        class Module(torch.nn.Module):
            def forward(self, boxes, size):
                return ops.boxes.clip_boxes_to_image(boxes, size.shape)

        self.run_model(Module(), [(boxes, size), (boxes, size_2)],
                       input_names=["boxes", "size"],
                       dynamic_axes={"size": [0, 1]})

126
    def test_roi_align(self):
127
128
129
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
130
        self.run_model(model, [(x, single_roi)])
131

132
133
134
135
136
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, -1)
        self.run_model(model, [(x, single_roi)])

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def test_roi_align_aligned(self):
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 1.5, 1.5, 3, 3]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 0.5, 3, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1.8, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((2, 2), 2.5, 0, aligned=True)
        self.run_model(model, [(x, single_roi)])

158
159
160
161
162
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((2, 2), 2.5, -1, aligned=True)
        self.run_model(model, [(x, single_roi)])

163
164
165
166
167
168
169
    @unittest.skip  # Issue in exporting ROIAlign with aligned = True for malformed boxes
    def test_roi_align_malformed_boxes(self):
        x = torch.randn(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 2, 0.3, 1.5, 1.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 1, aligned=True)
        self.run_model(model, [(x, single_roi)])

170
    def test_roi_pool(self):
171
172
173
174
175
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
176
177
        self.run_model(model, [(x, rois)])

178
179
180
181
182
183
184
185
186
187
188
189
    def test_resize_images(self):
        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()

            def forward(self_module, images):
                return self_module.transform.resize(images, None)[0]

        input = torch.rand(3, 10, 20)
        input_test = torch.rand(3, 100, 150)
        self.run_model(TransformModule(), [(input,), (input_test,)],
190
                       input_names=["input1"], dynamic_axes={"input1": [0, 1, 2]})
191

192
193
194
195
196
    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
197
                self_module.transform = self._init_test_generalized_rcnn_transform()
198
199
200
201

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

202
203
204
        input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        self.run_model(TransformModule(), [(input,), (input_test,)])
205

206
    def _init_test_generalized_rcnn_transform(self):
207
208
        min_size = 100
        max_size = 200
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7
227
        rpn_score_thresh = 0.0
228
229
230
231
232

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
233
234
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh,
            score_thresh=rpn_score_thresh)
235
236
        return rpn

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

286
    def test_rpn(self):
287
288
        set_rng_seed(0)

289
        class RPNModule(torch.nn.Module):
290
            def __init__(self_module):
291
292
293
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()

294
295
296
            def forward(self_module, images, features):
                images = ImageList(images, [i.shape[-2:] for i in images])
                return self_module.rpn(images, features)
297

298
        images = torch.rand(2, 3, 150, 150)
299
        features = self.get_features(images)
300
301
        images2 = torch.rand(2, 3, 80, 80)
        test_features = self.get_features(images2)
302

303
        model = RPNModule()
304
        model.eval()
305
306
307
308
309
310
311
        model(images, features)

        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3],
                                     "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3],
                                     "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

338
339
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
340
            def __init__(self_module):
341
342
343
344
345
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()

346
347
348
349
350
            def forward(self_module, images, features):
                original_image_sizes = [img.shape[-2:] for img in images]
                images = ImageList(images, [i.shape[-2:] for i in images])
                proposals, _ = self_module.rpn(images, features)
                detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
351
                detections = self_module.transform.postprocess(detections,
352
353
                                                               images.image_sizes,
                                                               original_image_sizes)
354
355
                return detections

356
        images = torch.rand(2, 3, 100, 100)
357
        features = self.get_features(images)
358
359
        images2 = torch.rand(2, 3, 150, 150)
        test_features = self.get_features(images2)
360

361
        model = RoiHeadsModule()
362
        model.eval()
363
        model(images, features)
364

365
366
367
368
369
370
        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3],
                                     "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})

    def get_image_from_url(self, url, size=None):
371
372
373
374
375
376
377
        import requests
        from PIL import Image
        from io import BytesIO
        from torchvision import transforms

        data = requests.get(url)
        image = Image.open(BytesIO(data.content)).convert("RGB")
378
379
380
381

        if size is None:
            size = (300, 200)
        image = image.resize(size, Image.BILINEAR)
382
383
384
385
386
387

        to_tensor = transforms.ToTensor()
        return to_tensor(image)

    def get_test_images(self):
        image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg"
388
        image = self.get_image_from_url(url=image_url, size=(100, 320))
389

390
        image_url2 = "https://pytorch.org/tutorials/_static/img/tv_tutorial/tv_image05.png"
391
        image2 = self.get_image_from_url(url=image_url2, size=(250, 380))
392

393
394
395
396
397
398
        images = [image]
        test_images = [image2]
        return images, test_images

    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()
399
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
400
        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
401
402
        model.eval()
        model(images)
403
404
405
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)], input_names=["images_tensors"],
                       output_names=["outputs"],
406
                       dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
407
408
409
                       tolerate_small_mismatch=True)
        # Test exported model for an image with no detections on other images
        self.run_model(model, [(dummy_image,), (images,)], input_names=["images_tensors"],
410
                       output_names=["outputs"],
411
                       dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
412
                       tolerate_small_mismatch=True)
413

414
415
416
417
    # Verify that paste_mask_in_image beahves the same in tracing.
    # This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
    # (since jit_trace witll call _onnx_paste_masks_in_image).
    def test_paste_mask_in_image(self):
418
419
420
421
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        masks = torch.rand(10, 1, 26, 26)
        boxes = torch.rand(10, 4)
        boxes[:, 2:] += torch.rand(10, 2)
        boxes *= 50
        o_im_s = (100, 100)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out = paste_masks_in_image(masks, boxes, o_im_s)
        jit_trace = torch.jit.trace(paste_masks_in_image,
                                    (masks, boxes,
                                     [torch.tensor(o_im_s[0]),
                                      torch.tensor(o_im_s[1])]))
        out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])

        assert torch.all(out.eq(out_trace))

        masks2 = torch.rand(20, 1, 26, 26)
        boxes2 = torch.rand(20, 4)
        boxes2[:, 2:] += torch.rand(20, 2)
        boxes2 *= 100
        o_im_s2 = (200, 200)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
        out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])

        assert torch.all(out2.eq(out_trace2))

    def test_mask_rcnn(self):
        images, test_images = self.get_test_images()
450
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
Lara Haidar's avatar
Lara Haidar committed
451
        model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
452
453
        model.eval()
        model(images)
454
455
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)],
456
                       input_names=["images_tensors"],
457
                       output_names=["boxes", "labels", "scores", "masks"],
458
459
                       dynamic_axes={"images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2]},
460
                       tolerate_small_mismatch=True)
461
462
        # TODO: enable this test once dynamic model export is fixed
        # Test exported model for an image with no detections on other images
463
464
465
        self.run_model(model, [(dummy_image,), (images,)],
                       input_names=["images_tensors"],
                       output_names=["boxes", "labels", "scores", "masks"],
466
467
                       dynamic_axes={"images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2]},
468
                       tolerate_small_mismatch=True)
469

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    # Verify that heatmaps_to_keypoints behaves the same in tracing.
    # This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
    # (since jit_trace witll call _heatmaps_to_keypoints).
    # @unittest.skip("Disable test until Resize bug fixed in ORT")
    def test_heatmaps_to_keypoints(self):
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

        maps = torch.rand(10, 1, 26, 26)
        rois = torch.rand(10, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out = heatmaps_to_keypoints(maps, rois)
        jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
        out_trace = jit_trace(maps, rois)

        assert torch.all(out[0].eq(out_trace[0]))
        assert torch.all(out[1].eq(out_trace[1]))

        maps2 = torch.rand(20, 2, 21, 21)
        rois2 = torch.rand(20, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out2 = heatmaps_to_keypoints(maps2, rois2)
        out_trace2 = jit_trace(maps2, rois2)

        assert torch.all(out2[0].eq(out_trace2[0]))
        assert torch.all(out2[1].eq(out_trace2[1]))
497

498
    def test_keypoint_rcnn(self):
Lara Haidar's avatar
Lara Haidar committed
499
        images, test_images = self.get_test_images()
500
        dummy_images = [torch.ones(3, 100, 100) * 0.3]
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
501
        model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
502
        model.eval()
503
        model(images)
504
        self.run_model(model, [(images,), (test_images,), (dummy_images,)],
505
506
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
507
                       dynamic_axes={"images_tensors": [0, 1, 2]},
508
                       tolerate_small_mismatch=True)
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
509

510
511
512
        self.run_model(model, [(dummy_images,), (test_images,)],
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
513
                       dynamic_axes={"images_tensors": [0, 1, 2]},
514
                       tolerate_small_mismatch=True)
515

516
517
518
519
520
521
522
523
524
525
526
    def test_shufflenet_v2_dynamic_axes(self):
        model = models.shufflenet_v2_x0_5(pretrained=True)
        dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True)
        test_inputs = torch.cat([dummy_input, dummy_input, dummy_input], 0)

        self.run_model(model, [(dummy_input,), (test_inputs,)],
                       input_names=["input_images"],
                       output_names=["output"],
                       dynamic_axes={"input_images": {0: 'batch_size'}, "output": {0: 'batch_size'}},
                       tolerate_small_mismatch=True)

527
528
529

if __name__ == '__main__':
    unittest.main()