"vscode:/vscode.git/clone" did not exist on "ec87284c4bf6df77360adb1f97df6c4d14f33f12"
test_models.py 32.3 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
22


23
def get_models_from_module(module):
24
    # TODO add a registration mechanism to torchvision.models
25
26
27
28
29
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


77
78
79
80
81
82
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
83
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
84
85
86
87
88
89
90
91
92
93
94
95
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


96
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
97
98
99
100
101
102
103
104
105
106
107
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
108
        print(f"Accepting updated output for {filename}:\n\n{output}")
109
110
111
112
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
113
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
114
115
    else:
        expected = torch.load(expected_file)
116
117
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
118
119
120
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


121
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
122
123
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

124
125
126
127
128
129
130
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
131
132
133

    sm = torch.jit.script(nn_module)

134
135
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
136
            eager_out = nn_module(*args)
137

138
    with torch.no_grad(), freeze_rng_state():
139
140
141
142
143
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
144
145
146
147
148
149
150
151

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
152
153


154
def _check_fx_compatible(model, inputs, eager_out=None):
155
    model_fx = torch.fx.symbolic_trace(model)
156
157
158
159
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
160
161


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


191
192
193
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
194
script_model_unwrapper = {
195
196
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
197
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
198
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
199
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
200
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
201
    "maskrcnn_resnet50_fpn": lambda x: x[1],
202
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
203
204
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
205
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
206
    "ssd300_vgg16": lambda x: x[1],
207
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
208
    "fcos_resnet50_fpn": lambda x: x[1],
209
}
210
211


212
213
214
215
216
217
218
219
220
221
222
223
224
225
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
226
227
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
228
    "deeplabv3_mobilenet_v3_large",
229
230
    "fcn_resnet50",
    "fcn_resnet101",
231
    "lraspp_mobilenet_v3_large",
232
    "maskrcnn_resnet50_fpn",
233
    "maskrcnn_resnet50_fpn_v2",
234
235
)

236
237
238
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
239
quantized_flaky_models = ("inception_v3", "resnet50")
240

241

242
243
244
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
245
246
247
248
249
250
251
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
252
    },
253
254
255
256
257
258
259
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
260
261
262
263
264
265
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
266
    },
267
268
269
270
271
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
272
    },
273
274
275
276
277
278
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
279
280
281
282
283
284
285
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
286
287
288
289
290
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
291
    },
292
293
294
295
296
297
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
298
299
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
300
    },
301
302
303
304
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
305
    },
306
307
308
309
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
310
}
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
329
330


331
332
333
334
335
336
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
337
338
339
340
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
341
342
343
344
345
346
347
348
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
349
350
351
352
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
353
354
355
356
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
357
358
359
360
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
377
378
379
380
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
381
382
383
}


Anirudh's avatar
Anirudh committed
384
385
386
387
388
389
390
391
392
393
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


394
395
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
396
397
398
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

399
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
400
    params = model1.state_dict()
401
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
402
403
404
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
405
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
406

407
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
408
409
410
411
412
413
414
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

415
416
417
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
418

419
420
421
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
422
423
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
424
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
425
426
427
428
429
430
431
432
433
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
434
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
435
436
437
438
439
440
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


441
442
443
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
444
445
446
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
447
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
448

449
    model = model_fn(norm_layer=get_gn)
450
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
451
452
453
454
455
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
456
457
458
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
459
460
461
462
463
464
465
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
466
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
467
468
469


def test_fasterrcnn_double():
470
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
471
472
473
474
475
476
477
478
479
480
481
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
482
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
483
484
485
486


def test_googlenet_eval():
    kwargs = {}
487
488
489
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
490
491
492
493
494
495
496
497
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
498
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
499
500
501
502
503
504
505
506
507
508


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

509
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
510
511
512
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
513
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
514
515
516
517
518
519
520
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
521
        out = model(model_input)
522

Anirudh's avatar
Anirudh committed
523
    checkOut(out)
524

525
526
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
527
528
529
530
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
531

Anirudh's avatar
Anirudh committed
532
    checkOut(out_cpu)
533

534
535
    _check_input_backprop(model, [x])

536

Anirudh's avatar
Anirudh committed
537
def test_generalizedrcnn_transform_repr():
538

Anirudh's avatar
Anirudh committed
539
540
541
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
542

543
544
545
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
546

Anirudh's avatar
Anirudh committed
547
    # Check integrity of object __repr__ attribute
548
549
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
550
551
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
552
553
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
554
555


556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


585
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
586
@pytest.mark.parametrize("dev", cpu_and_gpu())
587
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
588
589
    set_rng_seed(0)
    defaults = {
590
591
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
592
    }
593
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
594
    kwargs = {**defaults, **_model_params.get(model_name, {})}
595
    num_classes = kwargs.get("num_classes")
596
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
597

598
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
599
600
601
602
603
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
604
    assert out.shape[-1] == num_classes
605
606
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
607
608
609
610
611
612
613
614

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
615

616
617
    _check_input_backprop(model, x)

618

619
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
620
@pytest.mark.parametrize("dev", cpu_and_gpu())
621
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
622
623
    set_rng_seed(0)
    defaults = {
624
        "num_classes": 10,
625
        "weights_backbone": None,
626
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
627
    }
628
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
629
    kwargs = {**defaults, **_model_params.get(model_name, {})}
630
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
631

632
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
633
634
635
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
636
    out = model(x)
Anirudh's avatar
Anirudh committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

656
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
657

658
659
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
660
661
662

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
663
            out = model(x)
Anirudh's avatar
Anirudh committed
664
665
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
666
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
667
668

    if not full_validation:
669
        msg = (
670
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
671
672
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
673
            "significant changes to the codebase."
674
        )
Anirudh's avatar
Anirudh committed
675
676
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
677

678
679
    _check_input_backprop(model, x)

680

681
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
682
@pytest.mark.parametrize("dev", cpu_and_gpu())
683
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
684
685
    set_rng_seed(0)
    defaults = {
686
        "num_classes": 50,
687
        "weights_backbone": None,
688
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
689
    }
690
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
691
    kwargs = {**defaults, **_model_params.get(model_name, {})}
692
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
693

694
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
695
696
697
698
699
700
701
702
703
704
705
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
706
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
721
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
744
745
746
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
747
748
749
750
751
752
753
754
755
756

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
757
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
758
759
760
761
762
763
764
765
766

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
767
        msg = (
768
            f"The output of {test_detection_model.__name__} could only be partially validated. "
769
770
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
771
            "significant changes to the codebase."
772
        )
Anirudh's avatar
Anirudh committed
773
774
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
775

776
777
    _check_input_backprop(model, model_input)

778

779
780
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
781
    set_rng_seed(0)
782
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
783
784
785
786
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
787
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
788
789
790
        model(x)

    # validate type
791
    targets = [{"boxes": 0.0}]
792
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
793
794
795
796
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
797
        targets = [{"boxes": boxes}]
798
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
799
800
801
802
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
803
    targets = [{"boxes": boxes}]
804
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
805
        model(x, targets=targets)
806

807

808
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
809
@pytest.mark.parametrize("dev", cpu_and_gpu())
810
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
811
812
813
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
814
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
815
    # test both basicblock and Bottleneck
816
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
817
818
819
820
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
821
822
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
823
824
825
826
827
828
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
829

830
831
    _check_input_backprop(model, x)

832

833
834
835
836
837
838
839
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
840
841
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
842
    set_rng_seed(0)
843
    defaults = {
844
        "num_classes": 5,
845
846
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
847
    }
848
    model_name = model_fn.__name__
849
    kwargs = {**defaults, **_model_params.get(model_name, {})}
850
    input_shape = kwargs.pop("input_shape")
851
852

    # First check if quantize=True provides models that can run with input data
853
    model = model_fn(**kwargs)
854
    model.eval()
855
    x = torch.rand(input_shape)
856
857
858
859
860
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
861
862
863
864
865
866
867
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
868

869
    kwargs["quantize"] = False
870
    for eval_mode in [True, False]:
871
        model = model_fn(**kwargs)
872
873
        if eval_mode:
            model.eval()
874
            model.qconfig = torch.ao.quantization.default_qconfig
875
876
        else:
            model.train()
877
            model.qconfig = torch.ao.quantization.default_qat_qconfig
878

879
        model.fuse_model(is_qat=not eval_mode)
880
        if eval_mode:
881
            torch.ao.quantization.prepare(model, inplace=True)
882
        else:
883
            torch.ao.quantization.prepare_qat(model, inplace=True)
884
885
            model.eval()

886
        torch.ao.quantization.convert(model, inplace=True)
887
888


889
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
890
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
891
    model_name = model_fn.__name__
892
893
894
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
895
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
896
897
898
899
900

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

    model = model_builder(corr_block=corr_block).eval().to("cuda")
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
    _assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)


929
if __name__ == "__main__":
930
    pytest.main([__file__])