test_aev.py 15.1 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
import itertools
import ase
8
import ase.io
9
import math
10
import traceback
Gao, Xiang's avatar
Gao, Xiang committed
11
from common_aev_test import _TestAEVBase
12

13
14

path = os.path.dirname(os.path.realpath(__file__))
Gao, Xiang's avatar
Gao, Xiang committed
15
const_file = os.path.join(path, '../torchani/resources/ani-1x_8x/rHCNO-5.2R_16-3.5A_a4-8.params')  # noqa: E501
16
17
18
N = 97


19
class TestAEVConstructor(torchani.testing.TestCase):
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    # Test that checks that the friendly constructor
    # reproduces the values from ANI1x with the correct parameters
    def testCoverLinearly(self):
        consts = torchani.neurochem.Constants(const_file)
        aev_computer = torchani.AEVComputer(**consts)
        ani1x_values = {'radial_cutoff': 5.2,
                        'angular_cutoff': 3.5,
                        'radial_eta': 16.0,
                        'angular_eta': 8.0,
                        'radial_dist_divisions': 16,
                        'angular_dist_divisions': 4,
                        'zeta': 32.0,
                        'angle_sections': 8,
                        'num_species': 4}
        aev_computer_alt = torchani.AEVComputer.cover_linearly(**ani1x_values)
        constants = aev_computer.constants()
        constants_alt = aev_computer_alt.constants()
        for c, ca in zip(constants, constants_alt):
38
            self.assertEqual(c, ca)
39
40


41
class TestIsolated(torchani.testing.TestCase):
42
43
44
45
    # Tests that there is no error when atoms are separated
    # a distance greater than the cutoff radius from all other atoms
    # this can throw an IndexError for large distances or lone atoms
    def setUp(self):
Ignacio Pickering's avatar
Ignacio Pickering committed
46
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Gao, Xiang's avatar
Gao, Xiang committed
47
48
49
50
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts).to(self.device)
        self.species_to_tensor = consts.species_to_tensor
        self.rcr = self.aev_computer.Rcr
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        self.rca = self.aev_computer.Rca

    def testCO2(self):
        species = self.species_to_tensor(['O', 'C', 'O']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[-dist, 0., 0.], [0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH2(self):
        species = self.species_to_tensor(['H', 'H']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH(self):
        # Tests for failure on a single atom
        species = self.species_to_tensor(['H']).to(self.device).unsqueeze(0)
        error = ()
        coordinates = torch.tensor(
            [[[0., 0., 0.]]],
            requires_grad=True, device=self.device)
        try:
            _, _ = self.aev_computer((species, coordinates))
        except IndexError:
            error = (traceback.format_exc())
        if error:
            self.fail(f'\n\n{error}\nFailure on lone atom\n')


Gao, Xiang's avatar
Gao, Xiang committed
106
class TestAEV(_TestAEVBase):
107

108
109
    def testIsomers(self):
        for i in range(N):
110
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
111
112
113
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
114
115
116
117
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
118
                _, aev = self.aev_computer((species, coordinates))
119
120
                self.assertAEVEqual(expected_radial, expected_angular, aev)

121
122
123
124
125
126
127
    def testNoNan(self):
        # AEV should not output NaN even when coordinates are superimposed
        coordinates = torch.ones(1, 3, 3, dtype=torch.float)
        species = torch.zeros(1, 3, dtype=torch.long)
        _, aev = self.aev_computer((species, coordinates))
        self.assertFalse(torch.isnan(aev).any())

128
129
130
    def testPadding(self):
        species_coordinates = []
        radial_angular = []
131
        for i in range(N):
132
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
133
134
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
135
136
137
138
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
139
140
                species_coordinates.append(torchani.utils.broadcast_first_dim(
                    {'species': species, 'coordinates': coordinates}))
141
                radial_angular.append((radial, angular))
142
        species_coordinates = torchani.utils.pad_atomic_properties(
143
            species_coordinates)
144
        _, aev = self.aev_computer((species_coordinates['species'], species_coordinates['coordinates']))
145
146
147
148
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
149
            aev_ = aev[start:(start + conformations), 0:atoms]
150
            start += conformations
151
            self.assertAEVEqual(expected_radial, expected_angular, aev_)
152
153


154
155
156
157
158
159
class TestAEVJIT(TestAEV):
    def setUp(self):
        super().setUp()
        self.aev_computer = torch.jit.script(self.aev_computer)


160
class TestPBCSeeEachOther(torchani.testing.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
161
    def setUp(self):
Gao, Xiang's avatar
Gao, Xiang committed
162
163
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts).to(torch.double)
164
165
166
167
168
169
170
171
172
173
174

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
175
        pbc = torch.ones(3, dtype=torch.bool)
176

177
        _, aev = self.aev_computer((species, coordinates), cell=cell, pbc=pbc)
178
179
180

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
181
            _, aev2 = self.aev_computer((species, coordinates + translation), cell=cell, pbc=pbc)
182
            self.assertEqual(aev, aev2)
183
184
185
186

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
187
        pbc = torch.ones(3, dtype=torch.bool)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
203
204
            atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            atom_index1, atom_index2 = atom_index12.unbind(0)
205
206
207
208
209
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
210
        pbc = torch.ones(3, dtype=torch.bool)
211
212
213
214
215
216
217
218
219
220
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
221
222
            atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            atom_index1, atom_index2 = atom_index12.unbind(0)
223
224
225
226
227
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
228
        pbc = torch.ones(3, dtype=torch.bool)
229
230
231
232
233
234
235
236
237
238
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
239
                xyz2[j] = new_j
240
241

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
242
243
            atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            atom_index1, atom_index2 = atom_index12.unbind(0)
244
245
246
247
248
249
250
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
251
        pbc = torch.ones(3, dtype=torch.bool)
252
253
254
255
256
257
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
258
259
        atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
        atom_index1, atom_index2 = atom_index12.unbind(0)
260
261
262
263
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


264
class TestAEVOnBoundary(torchani.testing.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
265

266
267
268
269
270
271
272
273
274
275
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
276
        self.species = torch.tensor([[1, 0, 0, 0, 0]])
277
        self.pbc = torch.ones(3, dtype=torch.bool)
278
279
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
Gao, Xiang's avatar
Gao, Xiang committed
280
281
282
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts).to(torch.double)

283
        _, self.aev = self.aev_computer((self.species, self.center_coordinates), cell=self.cell, pbc=self.pbc)
284
285
286

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
287
        self.assertEqual(coordinates, coordinates_cell @ self.cell)
288
289
290
291
292
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
293
        self.assertEqual(coordinates, coordinates_cell @ self.cell)
294
295
296
297
298
299
300
301
302
303
304
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
305
            _, aev = self.aev_computer((self.species, coordinates), cell=self.cell, pbc=self.pbc)
306
            self.assertGreater(aev.abs().max().item(), 0)
307
            self.assertEqual(aev, self.aev)
308

Gao, Xiang's avatar
Gao, Xiang committed
309

310
class TestAEVOnBenzenePBC(torchani.testing.TestCase):
311
312

    def setUp(self):
Gao, Xiang's avatar
Gao, Xiang committed
313
314
315
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts)
        filename = os.path.join(path, '../tools/generate-unit-test-expect/others/Benzene.json')
316
317
        benzene = ase.io.read(filename)
        self.cell = torch.tensor(benzene.get_cell(complete=True)).float()
318
        self.pbc = torch.tensor(benzene.get_pbc(), dtype=torch.bool)
319
320
321
        species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
        self.species = species_to_tensor(benzene.get_chemical_symbols()).unsqueeze(0)
        self.coordinates = torch.tensor(benzene.get_positions()).unsqueeze(0).float()
322
        _, self.aev = self.aev_computer((self.species, self.coordinates), cell=self.cell, pbc=self.pbc)
323
        self.natoms = self.aev.shape[1]
324
325
326
327
328
329
330
331
332
333
334

    def testRepeat(self):
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 4)
        coordinates2 = torch.cat([
            self.coordinates,
            self.coordinates + c1,
            self.coordinates + 2 * c1,
            self.coordinates + 3 * c1,
        ], dim=1)
        cell2 = torch.stack([4 * c1, c2, c3])
335
        _, aev2 = self.aev_computer((species2, coordinates2), cell=cell2, pbc=self.pbc)
336
337
        for i in range(3):
            aev3 = aev2[:, i * self.natoms: (i + 1) * self.natoms, :]
338
            self.assertEqual(self.aev, aev3)
339
340
341
342
343
344
345
346
347
348

    def testManualMirror(self):
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 3 ** 3)
        coordinates2 = torch.cat([
            self.coordinates + i * c1 + j * c2 + k * c3
            for i, j, k in itertools.product([0, -1, 1], repeat=3)
        ], dim=1)
        _, aev2 = self.aev_computer((species2, coordinates2))
        aev2 = aev2[:, :self.natoms, :]
349
        self.assertEqual(self.aev, aev2)
350
351


352
353
if __name__ == '__main__':
    unittest.main()