You need to sign in or sign up before continuing.
test_aev.py 12.3 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
import random
import copy
8
9
10
import itertools
import ase
import math
11
12
13
14
15
16
17

path = os.path.dirname(os.path.realpath(__file__))
N = 97


class TestAEV(unittest.TestCase):

18
    def setUp(self):
19
20
        builtins = torchani.neurochem.Builtins()
        self.aev_computer = builtins.aev_computer
21
        self.radial_length = self.aev_computer.radial_length
22
23
        self.tolerance = 1e-5

24
25
    def random_skip(self, prob=0):
        return random.random() < prob
26
27
28
29

    def transform(self, x):
        return x

30
    def _assertAEVEqual(self, expected_radial, expected_angular, aev):
31
32
        radial = aev[..., :self.radial_length]
        angular = aev[..., self.radial_length:]
33
34
35
36
37
38
39
        radial_diff = expected_radial - radial
        radial_max_error = torch.max(torch.abs(radial_diff)).item()
        angular_diff = expected_angular - angular
        angular_max_error = torch.max(torch.abs(angular_diff)).item()
        self.assertLess(radial_max_error, self.tolerance)
        self.assertLess(angular_max_error, self.tolerance)

40
41
    def testIsomers(self):
        for i in range(N):
42
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
43
44
45
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
46
47
48
49
50
51
52
53
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
54
                _, aev = self.aev_computer((species, coordinates))
55
56
57
58
59
                self._assertAEVEqual(expected_radial, expected_angular, aev)

    def testPadding(self):
        species_coordinates = []
        radial_angular = []
60
        for i in range(N):
61
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
62
63
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
64
65
66
67
68
69
70
71
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                radial = self.transform(radial)
                angular = self.transform(angular)
72
                species_coordinates.append((species, coordinates))
73
                radial_angular.append((radial, angular))
74
        species, coordinates = torchani.utils.pad_coordinates(
75
76
77
78
79
80
            species_coordinates)
        _, aev = self.aev_computer((species, coordinates))
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
81
            aev_ = aev[start:(start + conformations), 0:atoms]
82
83
            start += conformations
            self._assertAEVEqual(expected_radial, expected_angular, aev_)
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, radial, angular, _, _ in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial).to(torch.float)
                angular = torch.from_numpy(angular).to(torch.float)
                _, aev = self.aev_computer((species, coordinates))
                self._assertAEVEqual(radial, angular, aev)

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    @unittest.skipIf(not torch.cuda.is_available(), "Too slow on CPU")
    def testGradient(self):
        """Test validity of autodiff by comparing analytical and numerical
        gradients.
        """
        datafile = os.path.join(path, 'test_data/NIST/all')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # Create local copy of aev_computer to avoid interference with other
        # tests.
        aev_computer = copy.deepcopy(self.aev_computer).to(device).to(torch.float64)
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data:
                coordinates = torch.from_numpy(coordinates).to(device).to(torch.float64)
                coordinates.requires_grad_(True)
                species = torch.from_numpy(species).to(device)

                # PyTorch gradcheck expects to test a funtion with inputs and
                # outputs of type torch.Tensor. The numerical estimation of
                # the deriviate involves making small modifications to the
                # input and observing how it affects the output. The species
                # tensor needs to be removed from the input so that gradcheck
                # does not attempt to estimate the gradient with respect to
                # species and fail.
                # Create simple function wrapper to handle this.
                def aev_forward_wrapper(coords):
                    # Return only the aev portion of the output.
                    return aev_computer((species, coords))[1]
                # Sanity Check: Forward wrapper returns aev without error.
                aev_forward_wrapper(coordinates)
                torch.autograd.gradcheck(
                    aev_forward_wrapper,
                    coordinates
                )

134

135
class TestPBCSeeEachOther(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
136
137

    def setUp(self):
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        self.builtin = torchani.neurochem.Builtins()
        self.aev_computer = self.builtin.aev_computer.to(torch.double)

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
        pbc = torch.ones(3, dtype=torch.uint8)

        _, aev = self.aev_computer((species, coordinates, cell, pbc))

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
            _, aev2 = self.aev_computer((species, coordinates + translation, cell, pbc))
            self.assertTrue(torch.allclose(aev, aev2))

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
179
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
196
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
                xyz2[j] = new_i

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
216
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
231
        atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
232
233
234
235
236
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


class TestAEVOnBoundary(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
        self.species = torch.tensor([[1, 0, 0, 0]])
        self.pbc = torch.ones(3, dtype=torch.uint8)
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
        builtin = torchani.neurochem.Builtins()
        self.aev_computer = builtin.aev_computer.to(torch.double)
        _, self.aev = self.aev_computer((self.species, self.center_coordinates, self.cell, self.pbc))

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
            _, aev = self.aev_computer((self.species, coordinates, self.cell, self.pbc))
            self.assertGreater(aev.abs().max().item(), 0)
            self.assertTrue(torch.allclose(aev, self.aev))
279

Gao, Xiang's avatar
Gao, Xiang committed
280

281
282
if __name__ == '__main__':
    unittest.main()