test_aev.py 14.7 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
import random
import copy
8
9
10
import itertools
import ase
import math
11
12
13

path = os.path.dirname(os.path.realpath(__file__))
N = 97
14
tolerance = 1e-5
15
16
17
18


class TestAEV(unittest.TestCase):

19
    def setUp(self):
20
21
        builtins = torchani.neurochem.Builtins()
        self.aev_computer = builtins.aev_computer
22
        self.radial_length = self.aev_computer.radial_length
23
        self.debug = False
24

25
26
    def random_skip(self, prob=0):
        return random.random() < prob
27
28
29
30

    def transform(self, x):
        return x

31
    def assertAEVEqual(self, expected_radial, expected_angular, aev, tolerance=tolerance):
32
33
        radial = aev[..., :self.radial_length]
        angular = aev[..., self.radial_length:]
34
        radial_diff = expected_radial - radial
35
36
37
        if self.debug:
            aid = 1
            print(torch.stack([expected_radial[0, aid, :], radial[0, aid, :], radial_diff.abs()[0, aid, :]], dim=1))
38
39
40
        radial_max_error = torch.max(torch.abs(radial_diff)).item()
        angular_diff = expected_angular - angular
        angular_max_error = torch.max(torch.abs(angular_diff)).item()
41
42
        self.assertLess(radial_max_error, tolerance)
        self.assertLess(angular_max_error, tolerance)
43

44
45
    def testIsomers(self):
        for i in range(N):
46
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
47
48
49
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
50
51
52
53
54
55
56
57
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
58
                _, aev = self.aev_computer((species, coordinates))
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
                self.assertAEVEqual(expected_radial, expected_angular, aev)

    @unittest.skipIf(True, "WIP")
    def testBenzeneMD(self):
        for i in range(100):
            datafile = os.path.join(path, 'test_data/benzene-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, cell, pbc \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                cell = torch.from_numpy(cell).float()
                pbc = torch.from_numpy(pbc)
                coordinates = torchani.utils.map2central(cell, coordinates, pbc)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
                _, aev = self.aev_computer((species, coordinates, cell, pbc))
                self.assertAEVEqual(expected_radial, expected_angular, aev)

    def testTripeptideMD(self):
        tol = 5e-6
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, _, _ \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
                _, aev = self.aev_computer((species, coordinates))
                self.assertAEVEqual(expected_radial, expected_angular, aev, tol)
99
100
101
102

    def testPadding(self):
        species_coordinates = []
        radial_angular = []
103
        for i in range(N):
104
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
105
106
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
107
108
109
110
111
112
113
114
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                radial = self.transform(radial)
                angular = self.transform(angular)
115
                species_coordinates.append((species, coordinates))
116
                radial_angular.append((radial, angular))
117
        species, coordinates = torchani.utils.pad_coordinates(
118
119
120
121
122
123
            species_coordinates)
        _, aev = self.aev_computer((species, coordinates))
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
124
            aev_ = aev[start:(start + conformations), 0:atoms]
125
            start += conformations
126
            self.assertAEVEqual(expected_radial, expected_angular, aev_)
127

128
129
130
131
132
133
134
135
136
137
138
139
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, radial, angular, _, _ in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial).to(torch.float)
                angular = torch.from_numpy(angular).to(torch.float)
                _, aev = self.aev_computer((species, coordinates))
140
                self.assertAEVEqual(radial, angular, aev)
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    @unittest.skipIf(not torch.cuda.is_available(), "Too slow on CPU")
    def testGradient(self):
        """Test validity of autodiff by comparing analytical and numerical
        gradients.
        """
        datafile = os.path.join(path, 'test_data/NIST/all')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # Create local copy of aev_computer to avoid interference with other
        # tests.
        aev_computer = copy.deepcopy(self.aev_computer).to(device).to(torch.float64)
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data:
                coordinates = torch.from_numpy(coordinates).to(device).to(torch.float64)
                coordinates.requires_grad_(True)
                species = torch.from_numpy(species).to(device)

                # PyTorch gradcheck expects to test a funtion with inputs and
                # outputs of type torch.Tensor. The numerical estimation of
                # the deriviate involves making small modifications to the
                # input and observing how it affects the output. The species
                # tensor needs to be removed from the input so that gradcheck
                # does not attempt to estimate the gradient with respect to
                # species and fail.
                # Create simple function wrapper to handle this.
                def aev_forward_wrapper(coords):
                    # Return only the aev portion of the output.
                    return aev_computer((species, coords))[1]
                # Sanity Check: Forward wrapper returns aev without error.
                aev_forward_wrapper(coordinates)
                torch.autograd.gradcheck(
                    aev_forward_wrapper,
                    coordinates
                )

177

178
class TestPBCSeeEachOther(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
179
180

    def setUp(self):
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        self.builtin = torchani.neurochem.Builtins()
        self.aev_computer = self.builtin.aev_computer.to(torch.double)

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
        pbc = torch.ones(3, dtype=torch.uint8)

        _, aev = self.aev_computer((species, coordinates, cell, pbc))

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
            _, aev2 = self.aev_computer((species, coordinates + translation, cell, pbc))
            self.assertTrue(torch.allclose(aev, aev2))

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
222
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
239
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
                xyz2[j] = new_i

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
259
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        pbc = torch.ones(3, dtype=torch.uint8)
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
274
        atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
275
276
277
278
279
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


class TestAEVOnBoundary(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
        self.species = torch.tensor([[1, 0, 0, 0]])
        self.pbc = torch.ones(3, dtype=torch.uint8)
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
        builtin = torchani.neurochem.Builtins()
        self.aev_computer = builtin.aev_computer.to(torch.double)
        _, self.aev = self.aev_computer((self.species, self.center_coordinates, self.cell, self.pbc))

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
            _, aev = self.aev_computer((self.species, coordinates, self.cell, self.pbc))
            self.assertGreater(aev.abs().max().item(), 0)
            self.assertTrue(torch.allclose(aev, self.aev))
322

Gao, Xiang's avatar
Gao, Xiang committed
323

324
325
if __name__ == '__main__':
    unittest.main()