test_aev.py 16.6 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
import random
import copy
8
9
import itertools
import ase
10
import ase.io
11
import math
12
13
14

path = os.path.dirname(os.path.realpath(__file__))
N = 97
15
tolerance = 1e-5
16
17
18
19


class TestAEV(unittest.TestCase):

20
    def setUp(self):
21
22
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
23
        self.radial_length = self.aev_computer.radial_length
24
        self.debug = False
25

26
27
    def random_skip(self, prob=0):
        return random.random() < prob
28
29
30
31

    def transform(self, x):
        return x

32
    def assertAEVEqual(self, expected_radial, expected_angular, aev, tolerance=tolerance):
33
34
        radial = aev[..., :self.radial_length]
        angular = aev[..., self.radial_length:]
35
        radial_diff = expected_radial - radial
36
37
38
        if self.debug:
            aid = 1
            print(torch.stack([expected_radial[0, aid, :], radial[0, aid, :], radial_diff.abs()[0, aid, :]], dim=1))
39
40
41
        radial_max_error = torch.max(torch.abs(radial_diff)).item()
        angular_diff = expected_angular - angular
        angular_max_error = torch.max(torch.abs(angular_diff)).item()
42
43
        self.assertLess(radial_max_error, tolerance)
        self.assertLess(angular_max_error, tolerance)
44

45
46
    def testIsomers(self):
        for i in range(N):
47
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
48
49
50
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
51
52
53
54
55
56
57
58
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
59
                _, aev = self.aev_computer((species, coordinates))
60
61
62
                self.assertAEVEqual(expected_radial, expected_angular, aev)

    def testBenzeneMD(self):
Gao, Xiang's avatar
Gao, Xiang committed
63
        for i in range(10):
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
            datafile = os.path.join(path, 'test_data/benzene-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, cell, pbc \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                cell = torch.from_numpy(cell).float()
                pbc = torch.from_numpy(pbc)
                coordinates = torchani.utils.map2central(cell, coordinates, pbc)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
                _, aev = self.aev_computer((species, coordinates, cell, pbc))
Gao, Xiang's avatar
Gao, Xiang committed
80
                self.assertAEVEqual(expected_radial, expected_angular, aev, 5e-5)
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

    def testTripeptideMD(self):
        tol = 5e-6
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, _, _ \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
                _, aev = self.aev_computer((species, coordinates))
                self.assertAEVEqual(expected_radial, expected_angular, aev, tol)
99
100
101
102

    def testPadding(self):
        species_coordinates = []
        radial_angular = []
103
        for i in range(N):
104
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
105
106
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
107
108
109
110
111
112
113
114
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                radial = self.transform(radial)
                angular = self.transform(angular)
115
                species_coordinates.append({'species': species, 'coordinates': coordinates})
116
                radial_angular.append((radial, angular))
117
        species_coordinates = torchani.utils.pad_atomic_properties(
118
            species_coordinates)
119
        _, aev = self.aev_computer((species_coordinates['species'], species_coordinates['coordinates']))
120
121
122
123
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
124
            aev_ = aev[start:(start + conformations), 0:atoms]
125
            start += conformations
126
            self.assertAEVEqual(expected_radial, expected_angular, aev_)
127

128
129
130
131
132
133
134
135
136
137
138
139
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, radial, angular, _, _ in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial).to(torch.float)
                angular = torch.from_numpy(angular).to(torch.float)
                _, aev = self.aev_computer((species, coordinates))
140
                self.assertAEVEqual(radial, angular, aev)
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    @unittest.skipIf(not torch.cuda.is_available(), "Too slow on CPU")
    def testGradient(self):
        """Test validity of autodiff by comparing analytical and numerical
        gradients.
        """
        datafile = os.path.join(path, 'test_data/NIST/all')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # Create local copy of aev_computer to avoid interference with other
        # tests.
        aev_computer = copy.deepcopy(self.aev_computer).to(device).to(torch.float64)
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data:
                coordinates = torch.from_numpy(coordinates).to(device).to(torch.float64)
                coordinates.requires_grad_(True)
                species = torch.from_numpy(species).to(device)

                # PyTorch gradcheck expects to test a funtion with inputs and
                # outputs of type torch.Tensor. The numerical estimation of
                # the deriviate involves making small modifications to the
                # input and observing how it affects the output. The species
                # tensor needs to be removed from the input so that gradcheck
                # does not attempt to estimate the gradient with respect to
                # species and fail.
                # Create simple function wrapper to handle this.
                def aev_forward_wrapper(coords):
                    # Return only the aev portion of the output.
                    return aev_computer((species, coords))[1]
                # Sanity Check: Forward wrapper returns aev without error.
                aev_forward_wrapper(coordinates)
                torch.autograd.gradcheck(
                    aev_forward_wrapper,
                    coordinates
                )

177

178
class TestPBCSeeEachOther(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
179
    def setUp(self):
180
181
        self.ani1x = torchani.models.ANI1x()
        self.aev_computer = self.ani1x.aev_computer.to(torch.double)
182
183
184
185
186
187
188
189
190
191
192

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
193
        pbc = torch.ones(3, dtype=torch.bool)
194
195
196
197
198
199
200
201
202
203
204

        _, aev = self.aev_computer((species, coordinates, cell, pbc))

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
            _, aev2 = self.aev_computer((species, coordinates + translation, cell, pbc))
            self.assertTrue(torch.allclose(aev, aev2))

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
205
        pbc = torch.ones(3, dtype=torch.bool)
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
221
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
222
223
224
225
226
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
227
        pbc = torch.ones(3, dtype=torch.bool)
228
229
230
231
232
233
234
235
236
237
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
238
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
239
240
241
242
243
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
244
        pbc = torch.ones(3, dtype=torch.bool)
245
246
247
248
249
250
251
252
253
254
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
255
                xyz2[j] = new_j
256
257

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
258
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
259
260
261
262
263
264
265
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
266
        pbc = torch.ones(3, dtype=torch.bool)
267
268
269
270
271
272
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
273
        atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
274
275
276
277
278
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


class TestAEVOnBoundary(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
279

280
281
282
283
284
285
286
287
288
289
290
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
        self.species = torch.tensor([[1, 0, 0, 0]])
291
        self.pbc = torch.ones(3, dtype=torch.bool)
292
293
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
294
295
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer.to(torch.double)
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        _, self.aev = self.aev_computer((self.species, self.center_coordinates, self.cell, self.pbc))

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
            _, aev = self.aev_computer((self.species, coordinates, self.cell, self.pbc))
            self.assertGreater(aev.abs().max().item(), 0)
            self.assertTrue(torch.allclose(aev, self.aev))
321

Gao, Xiang's avatar
Gao, Xiang committed
322

323
324
325
class TestAEVOnBenzenePBC(unittest.TestCase):

    def setUp(self):
326
327
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
328
329
330
        filename = os.path.join(path, '../tools/generate-unit-test-expect/others/Benzene.cif')
        benzene = ase.io.read(filename)
        self.cell = torch.tensor(benzene.get_cell(complete=True)).float()
331
        self.pbc = torch.tensor(benzene.get_pbc(), dtype=torch.bool)
332
333
334
335
        species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
        self.species = species_to_tensor(benzene.get_chemical_symbols()).unsqueeze(0)
        self.coordinates = torch.tensor(benzene.get_positions()).unsqueeze(0).float()
        _, self.aev = self.aev_computer((self.species, self.coordinates, self.cell, self.pbc))
336
        self.natoms = self.aev.shape[1]
337
338

    def testRepeat(self):
339
        tolerance = 5e-6
340
341
342
343
344
345
346
347
348
349
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 4)
        coordinates2 = torch.cat([
            self.coordinates,
            self.coordinates + c1,
            self.coordinates + 2 * c1,
            self.coordinates + 3 * c1,
        ], dim=1)
        cell2 = torch.stack([4 * c1, c2, c3])
        _, aev2 = self.aev_computer((species2, coordinates2, cell2, self.pbc))
350
351
352
353
354
355
356
357
358
359
360
361
362
        for i in range(3):
            aev3 = aev2[:, i * self.natoms: (i + 1) * self.natoms, :]
            self.assertTrue(torch.allclose(self.aev, aev3, atol=tolerance))

    def testManualMirror(self):
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 3 ** 3)
        coordinates2 = torch.cat([
            self.coordinates + i * c1 + j * c2 + k * c3
            for i, j, k in itertools.product([0, -1, 1], repeat=3)
        ], dim=1)
        _, aev2 = self.aev_computer((species2, coordinates2))
        aev2 = aev2[:, :self.natoms, :]
363
364
365
        self.assertTrue(torch.allclose(self.aev, aev2))


366
367
if __name__ == '__main__':
    unittest.main()