test_aev.py 19.4 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
import random
import copy
8
9
import itertools
import ase
10
import ase.io
11
import math
12
13
import traceback

14
15
16

path = os.path.dirname(os.path.realpath(__file__))
N = 97
17
tolerance = 1e-5
18
19


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class TestIsolated(unittest.TestCase):
    # Tests that there is no error when atoms are separated
    # a distance greater than the cutoff radius from all other atoms
    # this can throw an IndexError for large distances or lone atoms
    def setUp(self):
        if torch.cuda.is_available():
            self.device = 'cuda'
        else:
            self.device = 'cpu'
        ani1x = torchani.models.ANI1x().to(self.device)
        self.aev_computer = ani1x.aev_computer
        self.species_to_tensor = ani1x.species_to_tensor
        self.rcr = ani1x.aev_computer.Rcr
        self.rca = self.aev_computer.Rca

    def testCO2(self):
        species = self.species_to_tensor(['O', 'C', 'O']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[-dist, 0., 0.], [0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH2(self):
        species = self.species_to_tensor(['H', 'H']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH(self):
        # Tests for failure on a single atom
        species = self.species_to_tensor(['H']).to(self.device).unsqueeze(0)
        error = ()
        coordinates = torch.tensor(
            [[[0., 0., 0.]]],
            requires_grad=True, device=self.device)
        try:
            _, _ = self.aev_computer((species, coordinates))
        except IndexError:
            error = (traceback.format_exc())
        if error:
            self.fail(f'\n\n{error}\nFailure on lone atom\n')


88
89
class TestAEV(unittest.TestCase):

90
    def setUp(self):
91
92
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
93
        self.radial_length = self.aev_computer.radial_length
94
        self.debug = False
95

96
97
    def random_skip(self, prob=0):
        return random.random() < prob
98
99
100
101

    def transform(self, x):
        return x

102
    def assertAEVEqual(self, expected_radial, expected_angular, aev, tolerance=tolerance):
103
104
        radial = aev[..., :self.radial_length]
        angular = aev[..., self.radial_length:]
105
        radial_diff = expected_radial - radial
106
107
108
        if self.debug:
            aid = 1
            print(torch.stack([expected_radial[0, aid, :], radial[0, aid, :], radial_diff.abs()[0, aid, :]], dim=1))
109
110
111
        radial_max_error = torch.max(torch.abs(radial_diff)).item()
        angular_diff = expected_angular - angular
        angular_max_error = torch.max(torch.abs(angular_diff)).item()
112
113
        self.assertLess(radial_max_error, tolerance)
        self.assertLess(angular_max_error, tolerance)
114

115
116
    def testIsomers(self):
        for i in range(N):
117
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
118
119
120
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
121
122
123
124
125
126
127
128
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
129
                _, aev = self.aev_computer((species, coordinates))
130
131
132
                self.assertAEVEqual(expected_radial, expected_angular, aev)

    def testBenzeneMD(self):
Gao, Xiang's avatar
Gao, Xiang committed
133
        for i in range(10):
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            datafile = os.path.join(path, 'test_data/benzene-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, cell, pbc \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                cell = torch.from_numpy(cell).float()
                pbc = torch.from_numpy(pbc)
                coordinates = torchani.utils.map2central(cell, coordinates, pbc)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
                _, aev = self.aev_computer((species, coordinates, cell, pbc))
Gao, Xiang's avatar
Gao, Xiang committed
150
                self.assertAEVEqual(expected_radial, expected_angular, aev, 5e-5)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    def testTripeptideMD(self):
        tol = 5e-6
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, _, _ \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
                _, aev = self.aev_computer((species, coordinates))
                self.assertAEVEqual(expected_radial, expected_angular, aev, tol)
169
170
171
172

    def testPadding(self):
        species_coordinates = []
        radial_angular = []
173
        for i in range(N):
174
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
175
176
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
177
178
179
180
181
182
183
184
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                radial = self.transform(radial)
                angular = self.transform(angular)
185
                species_coordinates.append({'species': species, 'coordinates': coordinates})
186
                radial_angular.append((radial, angular))
187
        species_coordinates = torchani.utils.pad_atomic_properties(
188
            species_coordinates)
189
        _, aev = self.aev_computer((species_coordinates['species'], species_coordinates['coordinates']))
190
191
192
193
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
194
            aev_ = aev[start:(start + conformations), 0:atoms]
195
            start += conformations
196
            self.assertAEVEqual(expected_radial, expected_angular, aev_)
197

198
199
200
201
202
203
204
205
206
207
208
209
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, radial, angular, _, _ in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial).to(torch.float)
                angular = torch.from_numpy(angular).to(torch.float)
                _, aev = self.aev_computer((species, coordinates))
210
                self.assertAEVEqual(radial, angular, aev)
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    @unittest.skipIf(not torch.cuda.is_available(), "Too slow on CPU")
    def testGradient(self):
        """Test validity of autodiff by comparing analytical and numerical
        gradients.
        """
        datafile = os.path.join(path, 'test_data/NIST/all')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # Create local copy of aev_computer to avoid interference with other
        # tests.
        aev_computer = copy.deepcopy(self.aev_computer).to(device).to(torch.float64)
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data:
                coordinates = torch.from_numpy(coordinates).to(device).to(torch.float64)
                coordinates.requires_grad_(True)
                species = torch.from_numpy(species).to(device)

                # PyTorch gradcheck expects to test a funtion with inputs and
                # outputs of type torch.Tensor. The numerical estimation of
                # the deriviate involves making small modifications to the
                # input and observing how it affects the output. The species
                # tensor needs to be removed from the input so that gradcheck
                # does not attempt to estimate the gradient with respect to
                # species and fail.
                # Create simple function wrapper to handle this.
                def aev_forward_wrapper(coords):
                    # Return only the aev portion of the output.
                    return aev_computer((species, coords))[1]
                # Sanity Check: Forward wrapper returns aev without error.
                aev_forward_wrapper(coordinates)
                torch.autograd.gradcheck(
                    aev_forward_wrapper,
                    coordinates
                )

247

248
class TestPBCSeeEachOther(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
249
    def setUp(self):
250
251
        self.ani1x = torchani.models.ANI1x()
        self.aev_computer = self.ani1x.aev_computer.to(torch.double)
252
253
254
255
256
257
258
259
260
261
262

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
263
        pbc = torch.ones(3, dtype=torch.bool)
264
265
266
267
268
269
270
271
272
273
274

        _, aev = self.aev_computer((species, coordinates, cell, pbc))

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
            _, aev2 = self.aev_computer((species, coordinates + translation, cell, pbc))
            self.assertTrue(torch.allclose(aev, aev2))

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
275
        pbc = torch.ones(3, dtype=torch.bool)
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
291
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
292
293
294
295
296
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
297
        pbc = torch.ones(3, dtype=torch.bool)
298
299
300
301
302
303
304
305
306
307
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
308
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
309
310
311
312
313
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
314
        pbc = torch.ones(3, dtype=torch.bool)
315
316
317
318
319
320
321
322
323
324
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
325
                xyz2[j] = new_j
326
327

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
328
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
329
330
331
332
333
334
335
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
336
        pbc = torch.ones(3, dtype=torch.bool)
337
338
339
340
341
342
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
343
        atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
344
345
346
347
348
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


class TestAEVOnBoundary(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
349

350
351
352
353
354
355
356
357
358
359
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
360
        self.species = torch.tensor([[1, 0, 0, 0, 0]])
361
        self.pbc = torch.ones(3, dtype=torch.bool)
362
363
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
364
365
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer.to(torch.double)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        _, self.aev = self.aev_computer((self.species, self.center_coordinates, self.cell, self.pbc))

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
            _, aev = self.aev_computer((self.species, coordinates, self.cell, self.pbc))
            self.assertGreater(aev.abs().max().item(), 0)
            self.assertTrue(torch.allclose(aev, self.aev))
391

Gao, Xiang's avatar
Gao, Xiang committed
392

393
394
395
class TestAEVOnBenzenePBC(unittest.TestCase):

    def setUp(self):
396
397
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
398
399
400
        filename = os.path.join(path, '../tools/generate-unit-test-expect/others/Benzene.cif')
        benzene = ase.io.read(filename)
        self.cell = torch.tensor(benzene.get_cell(complete=True)).float()
401
        self.pbc = torch.tensor(benzene.get_pbc(), dtype=torch.bool)
402
403
404
405
        species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
        self.species = species_to_tensor(benzene.get_chemical_symbols()).unsqueeze(0)
        self.coordinates = torch.tensor(benzene.get_positions()).unsqueeze(0).float()
        _, self.aev = self.aev_computer((self.species, self.coordinates, self.cell, self.pbc))
406
        self.natoms = self.aev.shape[1]
407
408

    def testRepeat(self):
409
        tolerance = 5e-6
410
411
412
413
414
415
416
417
418
419
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 4)
        coordinates2 = torch.cat([
            self.coordinates,
            self.coordinates + c1,
            self.coordinates + 2 * c1,
            self.coordinates + 3 * c1,
        ], dim=1)
        cell2 = torch.stack([4 * c1, c2, c3])
        _, aev2 = self.aev_computer((species2, coordinates2, cell2, self.pbc))
420
421
422
423
424
425
426
427
428
429
430
431
432
        for i in range(3):
            aev3 = aev2[:, i * self.natoms: (i + 1) * self.natoms, :]
            self.assertTrue(torch.allclose(self.aev, aev3, atol=tolerance))

    def testManualMirror(self):
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 3 ** 3)
        coordinates2 = torch.cat([
            self.coordinates + i * c1 + j * c2 + k * c3
            for i, j, k in itertools.product([0, -1, 1], repeat=3)
        ], dim=1)
        _, aev2 = self.aev_computer((species2, coordinates2))
        aev2 = aev2[:, :self.natoms, :]
433
434
435
        self.assertTrue(torch.allclose(self.aev, aev2))


436
437
if __name__ == '__main__':
    unittest.main()