test_aev.py 15 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
import itertools
import ase
8
import ase.io
9
import math
10
import traceback
Gao, Xiang's avatar
Gao, Xiang committed
11
from common_aev_test import _TestAEVBase
12

13
14

path = os.path.dirname(os.path.realpath(__file__))
Gao, Xiang's avatar
Gao, Xiang committed
15
const_file = os.path.join(path, '../torchani/resources/ani-1x_8x/rHCNO-5.2R_16-3.5A_a4-8.params')  # noqa: E501
16
17
18
N = 97


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class TestAEVConstructor(unittest.TestCase):
    # Test that checks that the friendly constructor
    # reproduces the values from ANI1x with the correct parameters
    def testCoverLinearly(self):
        consts = torchani.neurochem.Constants(const_file)
        aev_computer = torchani.AEVComputer(**consts)
        ani1x_values = {'radial_cutoff': 5.2,
                        'angular_cutoff': 3.5,
                        'radial_eta': 16.0,
                        'angular_eta': 8.0,
                        'radial_dist_divisions': 16,
                        'angular_dist_divisions': 4,
                        'zeta': 32.0,
                        'angle_sections': 8,
                        'num_species': 4}
        aev_computer_alt = torchani.AEVComputer.cover_linearly(**ani1x_values)
        constants = aev_computer.constants()
        constants_alt = aev_computer_alt.constants()
        for c, ca in zip(constants, constants_alt):
            if isinstance(c, torch.Tensor):
                self.assertTrue(torch.isclose(c, ca).all())
            else:
                self.assertEqual(c, ca)


44
45
46
47
48
class TestIsolated(unittest.TestCase):
    # Tests that there is no error when atoms are separated
    # a distance greater than the cutoff radius from all other atoms
    # this can throw an IndexError for large distances or lone atoms
    def setUp(self):
Ignacio Pickering's avatar
Ignacio Pickering committed
49
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Gao, Xiang's avatar
Gao, Xiang committed
50
51
52
53
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts).to(self.device)
        self.species_to_tensor = consts.species_to_tensor
        self.rcr = self.aev_computer.Rcr
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        self.rca = self.aev_computer.Rca

    def testCO2(self):
        species = self.species_to_tensor(['O', 'C', 'O']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[-dist, 0., 0.], [0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH2(self):
        species = self.species_to_tensor(['H', 'H']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH(self):
        # Tests for failure on a single atom
        species = self.species_to_tensor(['H']).to(self.device).unsqueeze(0)
        error = ()
        coordinates = torch.tensor(
            [[[0., 0., 0.]]],
            requires_grad=True, device=self.device)
        try:
            _, _ = self.aev_computer((species, coordinates))
        except IndexError:
            error = (traceback.format_exc())
        if error:
            self.fail(f'\n\n{error}\nFailure on lone atom\n')


Gao, Xiang's avatar
Gao, Xiang committed
109
class TestAEV(_TestAEVBase):
110

111
112
    def testIsomers(self):
        for i in range(N):
113
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
114
115
116
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
117
118
119
120
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
121
                _, aev = self.aev_computer((species, coordinates))
122
123
                self.assertAEVEqual(expected_radial, expected_angular, aev)

124
125
126
    def testPadding(self):
        species_coordinates = []
        radial_angular = []
127
        for i in range(N):
128
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
129
130
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
131
132
133
134
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
135
136
                species_coordinates.append(torchani.utils.broadcast_first_dim(
                    {'species': species, 'coordinates': coordinates}))
137
                radial_angular.append((radial, angular))
138
        species_coordinates = torchani.utils.pad_atomic_properties(
139
            species_coordinates)
140
        _, aev = self.aev_computer((species_coordinates['species'], species_coordinates['coordinates']))
141
142
143
144
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
145
            aev_ = aev[start:(start + conformations), 0:atoms]
146
            start += conformations
147
            self.assertAEVEqual(expected_radial, expected_angular, aev_)
148
149


150
151
152
153
154
155
class TestAEVJIT(TestAEV):
    def setUp(self):
        super().setUp()
        self.aev_computer = torch.jit.script(self.aev_computer)


156
class TestPBCSeeEachOther(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
157
    def setUp(self):
Gao, Xiang's avatar
Gao, Xiang committed
158
159
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts).to(torch.double)
160
161
162
163
164
165
166
167
168
169
170

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
171
        pbc = torch.ones(3, dtype=torch.bool)
172

173
        _, aev = self.aev_computer((species, coordinates), cell=cell, pbc=pbc)
174
175
176

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
177
            _, aev2 = self.aev_computer((species, coordinates + translation), cell=cell, pbc=pbc)
178
179
180
181
182
            self.assertTrue(torch.allclose(aev, aev2))

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
183
        pbc = torch.ones(3, dtype=torch.bool)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
199
200
            atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            atom_index1, atom_index2 = atom_index12.unbind(0)
201
202
203
204
205
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
206
        pbc = torch.ones(3, dtype=torch.bool)
207
208
209
210
211
212
213
214
215
216
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
217
218
            atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            atom_index1, atom_index2 = atom_index12.unbind(0)
219
220
221
222
223
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
224
        pbc = torch.ones(3, dtype=torch.bool)
225
226
227
228
229
230
231
232
233
234
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
235
                xyz2[j] = new_j
236
237

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
238
239
            atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
            atom_index1, atom_index2 = atom_index12.unbind(0)
240
241
242
243
244
245
246
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
247
        pbc = torch.ones(3, dtype=torch.bool)
248
249
250
251
252
253
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
254
255
        atom_index12, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
        atom_index1, atom_index2 = atom_index12.unbind(0)
256
257
258
259
260
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


class TestAEVOnBoundary(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
261

262
263
264
265
266
267
268
269
270
271
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
272
        self.species = torch.tensor([[1, 0, 0, 0, 0]])
273
        self.pbc = torch.ones(3, dtype=torch.bool)
274
275
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
Gao, Xiang's avatar
Gao, Xiang committed
276
277
278
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts).to(torch.double)

279
        _, self.aev = self.aev_computer((self.species, self.center_coordinates), cell=self.cell, pbc=self.pbc)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
301
            _, aev = self.aev_computer((self.species, coordinates), cell=self.cell, pbc=self.pbc)
302
303
            self.assertGreater(aev.abs().max().item(), 0)
            self.assertTrue(torch.allclose(aev, self.aev))
304

Gao, Xiang's avatar
Gao, Xiang committed
305

306
307
308
class TestAEVOnBenzenePBC(unittest.TestCase):

    def setUp(self):
Gao, Xiang's avatar
Gao, Xiang committed
309
310
311
        consts = torchani.neurochem.Constants(const_file)
        self.aev_computer = torchani.AEVComputer(**consts)
        filename = os.path.join(path, '../tools/generate-unit-test-expect/others/Benzene.json')
312
313
        benzene = ase.io.read(filename)
        self.cell = torch.tensor(benzene.get_cell(complete=True)).float()
314
        self.pbc = torch.tensor(benzene.get_pbc(), dtype=torch.bool)
315
316
317
        species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
        self.species = species_to_tensor(benzene.get_chemical_symbols()).unsqueeze(0)
        self.coordinates = torch.tensor(benzene.get_positions()).unsqueeze(0).float()
318
        _, self.aev = self.aev_computer((self.species, self.coordinates), cell=self.cell, pbc=self.pbc)
319
        self.natoms = self.aev.shape[1]
320
321

    def testRepeat(self):
322
        tolerance = 5e-6
323
324
325
326
327
328
329
330
331
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 4)
        coordinates2 = torch.cat([
            self.coordinates,
            self.coordinates + c1,
            self.coordinates + 2 * c1,
            self.coordinates + 3 * c1,
        ], dim=1)
        cell2 = torch.stack([4 * c1, c2, c3])
332
        _, aev2 = self.aev_computer((species2, coordinates2), cell=cell2, pbc=self.pbc)
333
334
335
336
337
338
339
340
341
342
343
344
345
        for i in range(3):
            aev3 = aev2[:, i * self.natoms: (i + 1) * self.natoms, :]
            self.assertTrue(torch.allclose(self.aev, aev3, atol=tolerance))

    def testManualMirror(self):
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 3 ** 3)
        coordinates2 = torch.cat([
            self.coordinates + i * c1 + j * c2 + k * c3
            for i, j, k in itertools.product([0, -1, 1], repeat=3)
        ], dim=1)
        _, aev2 = self.aev_computer((species2, coordinates2))
        aev2 = aev2[:, :self.natoms, :]
346
347
348
        self.assertTrue(torch.allclose(self.aev, aev2))


349
350
if __name__ == '__main__':
    unittest.main()