tensor.py 16 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from textwrap import indent

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
6
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from torch_sparse.transpose import t
rusty1s's avatar
rusty1s committed
9
from torch_sparse.narrow import narrow
rusty1s's avatar
rusty1s committed
10
11
12
from torch_sparse.select import select
from torch_sparse.index_select import index_select, index_select_nnz
from torch_sparse.masked_select import masked_select, masked_select_nnz
rusty1s's avatar
rusty1s committed
13
import torch_sparse.reduce
rusty1s's avatar
rusty1s committed
14
from torch_sparse.diag import remove_diag
rusty1s's avatar
rusty1s committed
15
from torch_sparse.matmul import matmul
rusty1s's avatar
rusty1s committed
16
from torch_sparse.add import add, add_, add_nnz, add_nnz_
rusty1s's avatar
rusty1s committed
17
18
19


class SparseTensor(object):
rusty1s's avatar
rusty1s committed
20
21
22
23
    def __init__(self, row=None, rowptr=None, col=None, value=None,
                 sparse_size=None, is_sorted=False):
        self.storage = SparseStorage(row=row, rowptr=rowptr, col=col,
                                     value=value, sparse_size=sparse_size,
rusty1s's avatar
rusty1s committed
24
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
25
26
27
28

    @classmethod
    def from_storage(self, storage):
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
29
        self.storage = storage
rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
36
37
38
        return self

    @classmethod
    def from_dense(self, mat):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()

rusty1s's avatar
rusty1s committed
39
40
41
        row, col = index.t().contiguous()
        return SparseTensor(row=row, col=col, value=mat[row, col],
                            sparse_size=mat.size()[:2], is_sorted=True)
rusty1s's avatar
rusty1s committed
42
43
44

    @classmethod
    def from_torch_sparse_coo_tensor(self, mat, is_sorted=False):
rusty1s's avatar
rusty1s committed
45
46
47
        row, col = mat._indices()
        return SparseTensor(row=row, col=col, value=mat._values(),
                            sparse_size=mat.size()[:2], is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
48
49
50
51
52
53
54

    @classmethod
    def from_scipy(self, mat):
        colptr = None
        if isinstance(mat, scipy.sparse.csc_matrix):
            colptr = torch.from_numpy(mat.indptr).to(torch.long)

rusty1s's avatar
rusty1s committed
55
        mat = mat.tocsr()  # Pre-sort.
rusty1s's avatar
rusty1s committed
56
57
58
59
60
        rowptr = torch.from_numpy(mat.indptr).to(torch.long)
        mat = mat.tocoo()
        row = torch.from_numpy(mat.row).to(torch.long)
        col = torch.from_numpy(mat.col).to(torch.long)
        value = torch.from_numpy(mat.data)
rusty1s's avatar
rusty1s committed
61
        sparse_size = mat.shape[:2]
rusty1s's avatar
rusty1s committed
62

rusty1s's avatar
rusty1s committed
63
64
65
        storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                                sparse_size=sparse_size, colptr=colptr,
                                is_sorted=True)
rusty1s's avatar
rusty1s committed
66
67

        return SparseTensor.from_storage(storage)
rusty1s's avatar
rusty1s committed
68

rusty1s's avatar
rusty1s committed
69
    @classmethod
rusty1s's avatar
rusty1s committed
70
    def eye(self, M, N=None, device=None, dtype=None, has_value=True,
rusty1s's avatar
rusty1s committed
71
72
            fill_cache=False):
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
73

rusty1s's avatar
rusty1s committed
74
75
76
77
78
        row = torch.arange(min(M, N), device=device)
        rowptr = torch.arange(M + 1, device=device)
        if M > N:
            rowptr[row.size(0) + 1:] = row.size(0)
        col = row
rusty1s's avatar
rusty1s committed
79
80

        value = None
rusty1s's avatar
rusty1s committed
81
82
        if has_value:
            value = torch.ones(row.size(0), dtype=dtype, device=device)
rusty1s's avatar
rusty1s committed
83

rusty1s's avatar
rusty1s committed
84
        rowcount = colptr = colcount = csr2csc = csc2csr = None
rusty1s's avatar
rusty1s committed
85
        if fill_cache:
rusty1s's avatar
rusty1s committed
86
            rowcount = row.new_ones(M)
rusty1s's avatar
rusty1s committed
87
            if M > N:
rusty1s's avatar
rusty1s committed
88
                rowcount[row.size(0):] = 0
rusty1s's avatar
rusty1s committed
89
            colptr = torch.arange(N + 1, device=device)
rusty1s's avatar
rusty1s committed
90
            colcount = col.new_ones(N)
rusty1s's avatar
rusty1s committed
91
            if N > M:
rusty1s's avatar
rusty1s committed
92
93
94
95
96
97
98
99
100
                colptr[col.size(0) + 1:] = col.size(0)
                colcount[col.size(0):] = 0
            csr2csc = csc2csr = row

        storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                                sparse_size=torch.Size([M, N]),
                                rowcount=rowcount, colptr=colptr,
                                colcount=colcount, csr2csc=csr2csc,
                                csc2csr=csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
101
102
        return SparseTensor.from_storage(storage)

rusty1s's avatar
rusty1s committed
103
    def __copy__(self):
rusty1s's avatar
rusty1s committed
104
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
105
106

    def clone(self):
rusty1s's avatar
rusty1s committed
107
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
108
109
110
111
112
113
114
115
116

    def __deepcopy__(self, memo):
        new_sparse_tensor = self.clone()
        memo[id(self)] = new_sparse_tensor
        return new_sparse_tensor

    # Formats #################################################################

    def coo(self):
rusty1s's avatar
rusty1s committed
117
        return self.storage.row, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
118
119

    def csr(self):
rusty1s's avatar
rusty1s committed
120
        return self.storage.rowptr, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
121
122

    def csc(self):
rusty1s's avatar
fixes  
rusty1s committed
123
        perm = self.storage.csr2csc  # Compute `csr2csc` first.
rusty1s's avatar
rusty1s committed
124
125
        return (self.storage.colptr, self.storage.row[perm],
                self.storage.value[perm] if self.has_value() else None)
rusty1s's avatar
rusty1s committed
126
127
128
129

    # Storage inheritance #####################################################

    def has_value(self):
rusty1s's avatar
rusty1s committed
130
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
131

rusty1s's avatar
rusty1s committed
132
133
    def set_value_(self, value, layout=None, dtype=None):
        self.storage.set_value_(value, layout, dtype)
rusty1s's avatar
rusty1s committed
134
135
        return self

rusty1s's avatar
rusty1s committed
136
137
    def set_value(self, value, layout=None, dtype=None):
        return self.from_storage(self.storage.set_value(value, layout, dtype))
rusty1s's avatar
rusty1s committed
138
139

    def sparse_size(self, dim=None):
rusty1s's avatar
rusty1s committed
140
141
        sparse_size = self.storage.sparse_size
        return sparse_size if dim is None else sparse_size[dim]
rusty1s's avatar
rusty1s committed
142

rusty1s's avatar
rusty1s committed
143
144
    def sparse_resize(self, *sizes):
        return self.from_storage(self.storage.sparse_resize(*sizes))
rusty1s's avatar
rusty1s committed
145
146

    def is_coalesced(self):
rusty1s's avatar
rusty1s committed
147
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
148

rusty1s's avatar
rusty1s committed
149
150
    def coalesce(self, reduce='add'):
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
151
152

    def cached_keys(self):
rusty1s's avatar
rusty1s committed
153
        return self.storage.cached_keys()
rusty1s's avatar
rusty1s committed
154
155

    def fill_cache_(self, *args):
rusty1s's avatar
rusty1s committed
156
        self.storage.fill_cache_(*args)
rusty1s's avatar
rusty1s committed
157
158
159
        return self

    def clear_cache_(self, *args):
rusty1s's avatar
rusty1s committed
160
        self.storage.clear_cache_(*args)
rusty1s's avatar
rusty1s committed
161
162
163
164
        return self

    # Utility functions #######################################################

rusty1s's avatar
rusty1s committed
165
166
167
    def dim(self):
        return len(self.size())

rusty1s's avatar
rusty1s committed
168
169
    def size(self, dim=None):
        size = self.sparse_size()
rusty1s's avatar
rusty1s committed
170
        size += self.storage.value.size()[1:] if self.has_value() else ()
rusty1s's avatar
rusty1s committed
171
172
173
174
175
176
177
        return size if dim is None else size[dim]

    @property
    def shape(self):
        return self.size()

    def nnz(self):
rusty1s's avatar
rusty1s committed
178
        return self.storage.col.numel()
rusty1s's avatar
rusty1s committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    def density(self):
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self):
        return 1 - self.density()

    def avg_row_length(self):
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self):
        return self.nnz() / self.sparse_size(1)

    def numel(self):
        return self.value.numel() if self.has_value() else self.nnz()

    def is_quadratic(self):
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self):
        if not self.is_quadratic:
            return False

rusty1s's avatar
rusty1s committed
202
203
204
205
206
207
208
209
210
211
        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

        if not self.has_value():
            return True

        return (value1 == value2).all().item()
rusty1s's avatar
rusty1s committed
212
213

    def detach_(self):
rusty1s's avatar
rusty1s committed
214
        self.storage.apply_(lambda x: x.detach_())
rusty1s's avatar
rusty1s committed
215
216
217
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
218
        return self.from_storage(self.storage.apply(lambda x: x.detach()))
rusty1s's avatar
rusty1s committed
219

rusty1s's avatar
rusty1s committed
220
221
222
223
    @property
    def requires_grad(self):
        return self.storage.value.requires_grad if self.has_value() else False

rusty1s's avatar
rusty1s committed
224
225
226
227
    def requires_grad_(self, requires_grad=True, dtype=None):
        if requires_grad and not self.has_value():
            self.storage.set_value_(1, dtype=dtype)

rusty1s's avatar
rusty1s committed
228
229
        if self.has_value():
            self.storage.value.requires_grad_(requires_grad)
rusty1s's avatar
rusty1s committed
230

rusty1s's avatar
rusty1s committed
231
232
        return self

rusty1s's avatar
rusty1s committed
233
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
234
        return self.from_storage(self.storage.apply(lambda x: x.pin_memory()))
rusty1s's avatar
rusty1s committed
235
236

    def is_pinned(self):
rusty1s's avatar
rusty1s committed
237
        return all(self.storage.map(lambda x: x.is_pinned()))
rusty1s's avatar
rusty1s committed
238
239

    def share_memory_(self):
rusty1s's avatar
rusty1s committed
240
        self.storage.apply_(lambda x: x.share_memory_())
rusty1s's avatar
rusty1s committed
241
242
243
        return self

    def is_shared(self):
rusty1s's avatar
rusty1s committed
244
        return all(self.storage.map(lambda x: x.is_shared()))
rusty1s's avatar
rusty1s committed
245
246
247

    @property
    def device(self):
rusty1s's avatar
rusty1s committed
248
        return self.storage.col.device
rusty1s's avatar
rusty1s committed
249
250

    def cpu(self):
rusty1s's avatar
rusty1s committed
251
        return self.from_storage(self.storage.apply(lambda x: x.cpu()))
rusty1s's avatar
rusty1s committed
252
253

    def cuda(self, device=None, non_blocking=False, **kwargs):
rusty1s's avatar
rusty1s committed
254
255
        storage = self.storage.apply(
            lambda x: x.cuda(device, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
256
        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
257
258
259

    @property
    def is_cuda(self):
rusty1s's avatar
rusty1s committed
260
        return self.storage.col.is_cuda
rusty1s's avatar
rusty1s committed
261
262
263

    @property
    def dtype(self):
rusty1s's avatar
rusty1s committed
264
        return self.storage.value.dtype if self.has_value() else None
rusty1s's avatar
rusty1s committed
265
266

    def is_floating_point(self):
rusty1s's avatar
rusty1s committed
267
        value = self.storage.value
rusty1s's avatar
rusty1s committed
268
269
270
271
272
273
274
275
276
        return self.has_value() and torch.is_floating_point(value)

    def type(self, dtype=None, non_blocking=False, **kwargs):
        if dtype is None:
            return self.dtype

        if dtype == self.dtype:
            return self

rusty1s's avatar
rusty1s committed
277
278
        storage = self.storage.apply_value(
            lambda x: x.type(dtype, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
279
280

        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
281
282

    def to(self, *args, **kwargs):
rusty1s's avatar
rusty1s committed
283
284
285
        args = list(args)

        non_blocking = getattr(kwargs, 'non_blocking', False)
rusty1s's avatar
rusty1s committed
286

rusty1s's avatar
rusty1s committed
287
        storage = None
rusty1s's avatar
rusty1s committed
288
289
290
        if 'device' in kwargs:
            device = kwargs['device']
            del kwargs['device']
rusty1s's avatar
rusty1s committed
291
292
293
294
295
296
297
298
            storage = self.storage.apply(
                lambda x: x.to(device, non_blocking=non_blocking))
        else:
            for arg in args[:]:
                if isinstance(arg, str) or isinstance(arg, torch.device):
                    storage = self.storage.apply(
                        lambda x: x.to(arg, non_blocking=non_blocking))
                    args.remove(arg)
rusty1s's avatar
rusty1s committed
299

rusty1s's avatar
rusty1s committed
300
        storage = self.storage if storage is None else storage
rusty1s's avatar
rusty1s committed
301
302

        if len(args) > 0 or len(kwargs) > 0:
rusty1s's avatar
rusty1s committed
303
            storage = storage.apply_value(lambda x: x.type(*args, **kwargs))
rusty1s's avatar
rusty1s committed
304

rusty1s's avatar
rusty1s committed
305
        if storage == self.storage:  # Nothing has been changed...
rusty1s's avatar
rusty1s committed
306
307
308
            return self
        else:
            return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

    def bfloat16(self):
        return self.type(torch.bfloat16)

    def bool(self):
        return self.type(torch.bool)

    def byte(self):
        return self.type(torch.byte)

    def char(self):
        return self.type(torch.char)

    def half(self):
        return self.type(torch.half)

    def float(self):
        return self.type(torch.float)

    def double(self):
        return self.type(torch.double)

    def short(self):
        return self.type(torch.short)

    def int(self):
        return self.type(torch.int)

    def long(self):
        return self.type(torch.long)

    # Conversions #############################################################

    def to_dense(self, dtype=None):
        dtype = dtype or self.dtype
rusty1s's avatar
rusty1s committed
344
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
345
346
347
348
349
        mat = torch.zeros(self.size(), dtype=dtype, device=self.device)
        mat[row, col] = value if self.has_value() else 1
        return mat

    def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False):
rusty1s's avatar
rusty1s committed
350
351
352
353
354
355
356
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)
        if value is None:
            value = torch.ones(self.nnz(), dtype=dtype, device=self.device)
        return torch.sparse_coo_tensor(index, value, self.size(),
                                       device=self.device,
                                       requires_grad=requires_grad)
rusty1s's avatar
rusty1s committed
357

rusty1s's avatar
rusty1s committed
358
    def to_scipy(self, dtype=None, layout="csr"):
rusty1s's avatar
rusty1s committed
359
        assert self.dim() == 2
rusty1s's avatar
rusty1s committed
360
        layout = get_layout(layout)
rusty1s's avatar
rusty1s committed
361

rusty1s's avatar
rusty1s committed
362
363
        if not self.has_value():
            ones = torch.ones(self.nnz(), dtype=dtype).numpy()
rusty1s's avatar
rusty1s committed
364
365

        if layout == 'coo':
rusty1s's avatar
rusty1s committed
366
            row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
367
368
369
            row = row.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
370
371
            return scipy.sparse.coo_matrix((value, (row, col)), self.size())
        elif layout == 'csr':
rusty1s's avatar
rusty1s committed
372
373
374
375
            rowptr, col, value = self.csr()
            rowptr = rowptr.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
376
377
            return scipy.sparse.csr_matrix((value, col, rowptr), self.size())
        elif layout == 'csc':
rusty1s's avatar
rusty1s committed
378
379
380
381
            colptr, row, value = self.csc()
            colptr = colptr.detach().cpu().numpy()
            row = row.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
382
383
            return scipy.sparse.csc_matrix((value, row, colptr), self.size())

rusty1s's avatar
rusty1s committed
384
385
386
387
    # Standard Operators ######################################################

    def __getitem__(self, index):
        index = list(index) if isinstance(index, tuple) else [index]
rusty1s's avatar
typo  
rusty1s committed
388
        # More than one `Ellipsis` is not allowed...
rusty1s's avatar
rusty1s committed
389
        if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
rusty1s's avatar
rusty1s committed
390
            raise SyntaxError
rusty1s's avatar
rusty1s committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        dim = 0
        out = self
        while len(index) > 0:
            item = index.pop(0)
            if isinstance(item, int):
                out = out.select(dim, item)
                dim += 1
            elif isinstance(item, slice):
                if item.step is not None:
                    raise ValueError('Step parameter not yet supported.')

                start = 0 if item.start is None else item.start
                start = self.size(dim) + start if start < 0 else start

                stop = self.size(dim) if item.stop is None else item.stop
                stop = self.size(dim) + stop if stop < 0 else stop

                out = out.narrow(dim, start, max(stop - start, 0))
                dim += 1
            elif torch.is_tensor(item):
                if item.dtype == torch.bool:
                    out = out.masked_select(dim, item)
                    dim += 1
                elif item.dtype == torch.long:
                    out = out.index_select(dim, item)
                    dim += 1
            elif item == Ellipsis:
                if self.dim() - len(index) < dim:
                    raise SyntaxError()
                dim = self.dim() - len(index)
            else:
                raise SyntaxError()

        return out

rusty1s's avatar
rusty1s committed
427
428
429
430
431
432
433
434
435
    def __add__(self, other):
        return self.add(other)

    def __radd__(self, other):
        return self.add(other)

    def __iadd__(self, other):
        return self.add_(other)

rusty1s's avatar
rusty1s committed
436
437
438
    def __matmul__(a, b):
        return matmul(a, b, reduce='sum')

rusty1s's avatar
rusty1s committed
439
440
441
442
    # String Reputation #######################################################

    def __repr__(self):
        i = ' ' * 6
rusty1s's avatar
rusty1s committed
443
444
445
446
        row, col, value = self.coo()
        infos = []
        infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
        infos += [f'col={indent(col.__repr__(), i)[len(i):]}']
rusty1s's avatar
rusty1s committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

        if self.has_value():
            infos += [f'value={indent(value.__repr__(), i)[len(i):]}']

        infos += [
            f'size={tuple(self.size())}, '
            f'nnz={self.nnz()}, '
            f'density={100 * self.density():.02f}%'
        ]
        infos = ',\n'.join(infos)

        i = ' ' * (len(self.__class__.__name__) + 1)
        return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
463

rusty1s's avatar
rusty1s committed
464
SparseTensor.t = t
rusty1s's avatar
rusty1s committed
465
SparseTensor.narrow = narrow
rusty1s's avatar
rusty1s committed
466
467
468
469
470
SparseTensor.select = select
SparseTensor.index_select = index_select
SparseTensor.index_select_nnz = index_select_nnz
SparseTensor.masked_select = masked_select
SparseTensor.masked_select_nnz = masked_select_nnz
rusty1s's avatar
rusty1s committed
471
SparseTensor.reduction = torch_sparse.reduce.reduction
rusty1s's avatar
rusty1s committed
472
473
474
475
SparseTensor.sum = torch_sparse.reduce.sum
SparseTensor.mean = torch_sparse.reduce.mean
SparseTensor.min = torch_sparse.reduce.min
SparseTensor.max = torch_sparse.reduce.max
rusty1s's avatar
rusty1s committed
476
SparseTensor.remove_diag = remove_diag
rusty1s's avatar
rusty1s committed
477
SparseTensor.matmul = matmul
rusty1s's avatar
rusty1s committed
478
479
480
481
SparseTensor.add = add
SparseTensor.add_ = add_
SparseTensor.add_nnz = add_nnz
SparseTensor.add_nnz_ = add_nnz_
rusty1s's avatar
rusty1s committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

#     def __add__(self, other):
#         return self.add(other)

#     def __radd__(self, other):
#         return self.add(other)

#     def sub(self, layout=None):
#         raise NotImplementedError

#     def sub_(self, layout=None):
#         raise NotImplementedError

#     def mul(self, layout=None):
#         raise NotImplementedError

#     def mul_(self, layout=None):
#         raise NotImplementedError

#     def div(self, layout=None):
#         raise NotImplementedError

#     def div_(self, layout=None):
#         raise NotImplementedError