tensor.py 15.9 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from textwrap import indent

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
6
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from torch_sparse.transpose import t
rusty1s's avatar
rusty1s committed
9
from torch_sparse.narrow import narrow
rusty1s's avatar
rusty1s committed
10
11
12
from torch_sparse.select import select
from torch_sparse.index_select import index_select, index_select_nnz
from torch_sparse.masked_select import masked_select, masked_select_nnz
rusty1s's avatar
rusty1s committed
13
import torch_sparse.reduce
rusty1s's avatar
rusty1s committed
14
from torch_sparse.diag import remove_diag
rusty1s's avatar
rusty1s committed
15
16
17
18


class SparseTensor(object):
    def __init__(self, index, value=None, sparse_size=None, is_sorted=False):
rusty1s's avatar
rusty1s committed
19
20
        self.storage = SparseStorage(index, value, sparse_size,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
21
22
23
24

    @classmethod
    def from_storage(self, storage):
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
25
        self.storage = storage
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
        return self

    @classmethod
    def from_dense(self, mat):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()

        index = index.t().contiguous()
        value = mat[index[0], index[1]]
rusty1s's avatar
rusty1s committed
37
38
39
40
        return SparseTensor(index, value, mat.size()[:2], is_sorted=True)

    @classmethod
    def from_torch_sparse_coo_tensor(self, mat, is_sorted=False):
rusty1s's avatar
rusty1s committed
41
42
        return SparseTensor(mat._indices(), mat._values(),
                            mat.size()[:2], is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    @classmethod
    def from_scipy(self, mat):
        colptr = None
        if isinstance(mat, scipy.sparse.csc_matrix):
            colptr = torch.from_numpy(mat.indptr).to(torch.long)

        mat = mat.tocsr()
        rowptr = torch.from_numpy(mat.indptr).to(torch.long)
        mat = mat.tocoo()
        row = torch.from_numpy(mat.row).to(torch.long)
        col = torch.from_numpy(mat.col).to(torch.long)
        index = torch.stack([row, col], dim=0)
        value = torch.from_numpy(mat.data)
        size = mat.shape

rusty1s's avatar
rusty1s committed
59
60
        storage = SparseStorage(index, value, size, rowptr=rowptr,
                                colptr=colptr, is_sorted=True)
rusty1s's avatar
rusty1s committed
61
62

        return SparseTensor.from_storage(storage)
rusty1s's avatar
rusty1s committed
63

rusty1s's avatar
rusty1s committed
64
    @classmethod
rusty1s's avatar
rusty1s committed
65
66
67
    def eye(self, M, N=None, device=None, dtype=None, no_value=False,
            fill_cache=False):
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
68

rusty1s's avatar
rusty1s committed
69
        index = torch.empty((2, min(M, N)), dtype=torch.long, device=device)
rusty1s's avatar
rusty1s committed
70
71
72
73
74
        torch.arange(index.size(1), out=index[0])
        torch.arange(index.size(1), out=index[1])

        value = None
        if not no_value:
rusty1s's avatar
rusty1s committed
75
            value = torch.ones(index.size(1), dtype=dtype, device=device)
rusty1s's avatar
rusty1s committed
76
77
78

        rowcount = rowptr = colcount = colptr = csr2csc = csc2csr = None
        if fill_cache:
rusty1s's avatar
rusty1s committed
79
80
81
82
83
84
85
86
87
88
            rowcount = index.new_ones(M)
            rowptr = torch.arange(M + 1, device=device)
            if M > N:
                rowcount[index.size(1):] = 0
                rowptr[index.size(1) + 1:] = index.size(1)
            colcount = index.new_ones(N)
            colptr = torch.arange(N + 1, device=device)
            if N > M:
                colcount[index.size(1):] = 0
                colptr[index.size(1) + 1:] = index.size(1)
rusty1s's avatar
rusty1s committed
89
90
91
92
93
94
            csr2csc = torch.arange(index.size(1), device=device)
            csc2csr = torch.arange(index.size(1), device=device)

        storage = SparseStorage(
            index,
            value,
rusty1s's avatar
rusty1s committed
95
            torch.Size([M, N]),
rusty1s's avatar
rusty1s committed
96
97
98
99
100
101
102
103
104
105
            rowcount=rowcount,
            rowptr=rowptr,
            colcount=colcount,
            colptr=colptr,
            csr2csc=csr2csc,
            csc2csr=csc2csr,
            is_sorted=True,
        )
        return SparseTensor.from_storage(storage)

rusty1s's avatar
rusty1s committed
106
    def __copy__(self):
rusty1s's avatar
rusty1s committed
107
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
108
109

    def clone(self):
rusty1s's avatar
rusty1s committed
110
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
111
112
113
114
115
116
117
118
119

    def __deepcopy__(self, memo):
        new_sparse_tensor = self.clone()
        memo[id(self)] = new_sparse_tensor
        return new_sparse_tensor

    # Formats #################################################################

    def coo(self):
rusty1s's avatar
rusty1s committed
120
        return self.storage.index, self.storage.value
rusty1s's avatar
rusty1s committed
121
122

    def csr(self):
rusty1s's avatar
rusty1s committed
123
        return self.storage.rowptr, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
124
125

    def csc(self):
rusty1s's avatar
fixes  
rusty1s committed
126
        perm = self.storage.csr2csc  # Compute `csr2csc` first.
rusty1s's avatar
rusty1s committed
127
128
        return (self.storage.colptr, self.storage.row[perm],
                self.storage.value[perm] if self.has_value() else None)
rusty1s's avatar
rusty1s committed
129
130
131
132

    # Storage inheritance #####################################################

    def has_value(self):
rusty1s's avatar
rusty1s committed
133
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
134
135

    def set_value_(self, value, layout=None):
rusty1s's avatar
rusty1s committed
136
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
137
138
139
        return self

    def set_value(self, value, layout=None):
rusty1s's avatar
rusty1s committed
140
        return self.from_storage(self.storage.set_value(value, layout))
rusty1s's avatar
rusty1s committed
141
142

    def sparse_size(self, dim=None):
rusty1s's avatar
rusty1s committed
143
        return self.storage.sparse_size(dim)
rusty1s's avatar
rusty1s committed
144

rusty1s's avatar
rusty1s committed
145
146
    def sparse_resize(self, *sizes):
        return self.from_storage(self.storage.sparse_resize(*sizes))
rusty1s's avatar
rusty1s committed
147
148

    def is_coalesced(self):
rusty1s's avatar
rusty1s committed
149
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
150

rusty1s's avatar
rusty1s committed
151
152
    def coalesce(self, reduce='add'):
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
153
154

    def cached_keys(self):
rusty1s's avatar
rusty1s committed
155
        return self.storage.cached_keys()
rusty1s's avatar
rusty1s committed
156
157

    def fill_cache_(self, *args):
rusty1s's avatar
rusty1s committed
158
        self.storage.fill_cache_(*args)
rusty1s's avatar
rusty1s committed
159
160
161
        return self

    def clear_cache_(self, *args):
rusty1s's avatar
rusty1s committed
162
        self.storage.clear_cache_(*args)
rusty1s's avatar
rusty1s committed
163
164
165
166
167
168
        return self

    # Utility functions #######################################################

    def size(self, dim=None):
        size = self.sparse_size()
rusty1s's avatar
rusty1s committed
169
        size += self.storage.value.size()[1:] if self.has_value() else ()
rusty1s's avatar
rusty1s committed
170
171
172
173
174
175
176
177
178
179
        return size if dim is None else size[dim]

    def dim(self):
        return len(self.size())

    @property
    def shape(self):
        return self.size()

    def nnz(self):
rusty1s's avatar
rusty1s committed
180
        return self.storage.index.size(1)
rusty1s's avatar
rusty1s committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    def density(self):
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self):
        return 1 - self.density()

    def avg_row_length(self):
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self):
        return self.nnz() / self.sparse_size(1)

    def numel(self):
        return self.value.numel() if self.has_value() else self.nnz()

    def is_quadratic(self):
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self):
        if not self.is_quadratic:
            return False

        rowptr, col, val1 = self.csr()
        colptr, row, val2 = self.csc()
rusty1s's avatar
rusty1s committed
206
207
208
        index_sym = (rowptr == colptr).all() and (col == row).all()
        value_sym = (val1 == val2).all().item() if self.has_value() else True
        return index_sym.item() and value_sym
rusty1s's avatar
rusty1s committed
209
210

    def detach_(self):
rusty1s's avatar
rusty1s committed
211
        self.storage.apply_(lambda x: x.detach_())
rusty1s's avatar
rusty1s committed
212
213
214
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
215
        return self.from_storage(self.storage.apply(lambda x: x.detach()))
rusty1s's avatar
rusty1s committed
216
217

    def pin_memory(self):
rusty1s's avatar
rusty1s committed
218
        return self.from_storage(self.storage.apply(lambda x: x.pin_memory()))
rusty1s's avatar
rusty1s committed
219
220

    def is_pinned(self):
rusty1s's avatar
rusty1s committed
221
        return all(self.storage.map(lambda x: x.is_pinned()))
rusty1s's avatar
rusty1s committed
222
223

    def share_memory_(self):
rusty1s's avatar
rusty1s committed
224
        self.storage.apply_(lambda x: x.share_memory_())
rusty1s's avatar
rusty1s committed
225
226
227
        return self

    def is_shared(self):
rusty1s's avatar
rusty1s committed
228
        return all(self.storage.map(lambda x: x.is_shared()))
rusty1s's avatar
rusty1s committed
229
230
231

    @property
    def device(self):
rusty1s's avatar
rusty1s committed
232
        return self.storage.index.device
rusty1s's avatar
rusty1s committed
233
234

    def cpu(self):
rusty1s's avatar
rusty1s committed
235
        return self.from_storage(self.storage.apply(lambda x: x.cpu()))
rusty1s's avatar
rusty1s committed
236
237

    def cuda(self, device=None, non_blocking=False, **kwargs):
rusty1s's avatar
rusty1s committed
238
239
        storage = self.storage.apply(
            lambda x: x.cuda(device, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
240
        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
241
242
243

    @property
    def is_cuda(self):
rusty1s's avatar
rusty1s committed
244
        return self.storage.index.is_cuda
rusty1s's avatar
rusty1s committed
245
246
247

    @property
    def dtype(self):
rusty1s's avatar
rusty1s committed
248
        return self.storage.value.dtype if self.has_value() else None
rusty1s's avatar
rusty1s committed
249
250

    def is_floating_point(self):
rusty1s's avatar
rusty1s committed
251
        value = self.storage.value
rusty1s's avatar
rusty1s committed
252
253
254
255
256
257
258
259
260
        return self.has_value() and torch.is_floating_point(value)

    def type(self, dtype=None, non_blocking=False, **kwargs):
        if dtype is None:
            return self.dtype

        if dtype == self.dtype:
            return self

rusty1s's avatar
rusty1s committed
261
262
        storage = self.storage.apply_value(
            lambda x: x.type(dtype, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
263
264

        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
265
266
267
268
269
270
271

    def to(self, *args, **kwargs):
        storage = None

        if 'device' in kwargs:
            device = kwargs['device']
            del kwargs['device']
rusty1s's avatar
rusty1s committed
272
            storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
273
274
275
276
                device, non_blocking=getattr(kwargs, 'non_blocking', False)))

        for arg in args[:]:
            if isinstance(arg, str) or isinstance(arg, torch.device):
rusty1s's avatar
rusty1s committed
277
                storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
278
279
280
281
                    arg, non_blocking=getattr(kwargs, 'non_blocking', False)))
                args.remove(arg)

        if storage is not None:
rusty1s's avatar
rusty1s committed
282
            self = self.from_storage(storage)
rusty1s's avatar
rusty1s committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

        if len(args) > 0 or len(kwargs) > 0:
            self = self.type(*args, **kwargs)

        return self

    def bfloat16(self):
        return self.type(torch.bfloat16)

    def bool(self):
        return self.type(torch.bool)

    def byte(self):
        return self.type(torch.byte)

    def char(self):
        return self.type(torch.char)

    def half(self):
        return self.type(torch.half)

    def float(self):
        return self.type(torch.float)

    def double(self):
        return self.type(torch.double)

    def short(self):
        return self.type(torch.short)

    def int(self):
        return self.type(torch.int)

    def long(self):
        return self.type(torch.long)

    # Conversions #############################################################

    def to_dense(self, dtype=None):
        dtype = dtype or self.dtype
        (row, col), value = self.coo()
        mat = torch.zeros(self.size(), dtype=dtype, device=self.device)
        mat[row, col] = value if self.has_value() else 1
        return mat

    def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False):
        index, value = self.coo()
        return torch.sparse_coo_tensor(
rusty1s's avatar
rusty1s committed
331
332
333
            index, value if self.has_value() else torch.ones(
                self.nnz(), dtype=dtype, device=self.device), self.size(),
            device=self.device, requires_grad=requires_grad)
rusty1s's avatar
rusty1s committed
334
335

    def to_scipy(self, dtype=None, layout=None):
rusty1s's avatar
rusty1s committed
336
        assert self.dim() == 2
rusty1s's avatar
rusty1s committed
337
        layout = get_layout(layout)
rusty1s's avatar
rusty1s committed
338

rusty1s's avatar
rusty1s committed
339
340
        if not self.has_value():
            ones = torch.ones(self.nnz(), dtype=dtype).numpy()
rusty1s's avatar
rusty1s committed
341
342

        if layout == 'coo':
rusty1s's avatar
rusty1s committed
343
344
345
346
            (row, col), value = self.coo()
            row = row.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
347
348
            return scipy.sparse.coo_matrix((value, (row, col)), self.size())
        elif layout == 'csr':
rusty1s's avatar
rusty1s committed
349
350
351
352
            rowptr, col, value = self.csr()
            rowptr = rowptr.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
353
354
            return scipy.sparse.csr_matrix((value, col, rowptr), self.size())
        elif layout == 'csc':
rusty1s's avatar
rusty1s committed
355
356
357
358
            colptr, row, value = self.csc()
            colptr = colptr.detach().cpu().numpy()
            row = row.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
359
360
            return scipy.sparse.csc_matrix((value, row, colptr), self.size())

rusty1s's avatar
rusty1s committed
361
362
363
364
    # Standard Operators ######################################################

    def __getitem__(self, index):
        index = list(index) if isinstance(index, tuple) else [index]
rusty1s's avatar
typo  
rusty1s committed
365
        # More than one `Ellipsis` is not allowed...
rusty1s's avatar
rusty1s committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
            raise SyntaxError()

        dim = 0
        out = self
        while len(index) > 0:
            item = index.pop(0)
            if isinstance(item, int):
                out = out.select(dim, item)
                dim += 1
            elif isinstance(item, slice):
                if item.step is not None:
                    raise ValueError('Step parameter not yet supported.')

                start = 0 if item.start is None else item.start
                start = self.size(dim) + start if start < 0 else start

                stop = self.size(dim) if item.stop is None else item.stop
                stop = self.size(dim) + stop if stop < 0 else stop

                out = out.narrow(dim, start, max(stop - start, 0))
                dim += 1
            elif torch.is_tensor(item):
                if item.dtype == torch.bool:
                    out = out.masked_select(dim, item)
                    dim += 1
                elif item.dtype == torch.long:
                    out = out.index_select(dim, item)
                    dim += 1
            elif item == Ellipsis:
                if self.dim() - len(index) < dim:
                    raise SyntaxError()
                dim = self.dim() - len(index)
            else:
                raise SyntaxError()

        return out

rusty1s's avatar
rusty1s committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    # String Reputation #######################################################

    def __repr__(self):
        i = ' ' * 6
        index, value = self.coo()
        infos = [f'index={indent(index.__repr__(), i)[len(i):]}']

        if self.has_value():
            infos += [f'value={indent(value.__repr__(), i)[len(i):]}']

        infos += [
            f'size={tuple(self.size())}, '
            f'nnz={self.nnz()}, '
            f'density={100 * self.density():.02f}%'
        ]
        infos = ',\n'.join(infos)

        i = ' ' * (len(self.__class__.__name__) + 1)
        return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
426

rusty1s's avatar
rusty1s committed
427
SparseTensor.t = t
rusty1s's avatar
rusty1s committed
428
SparseTensor.narrow = narrow
rusty1s's avatar
rusty1s committed
429
430
431
432
433
SparseTensor.select = select
SparseTensor.index_select = index_select
SparseTensor.index_select_nnz = index_select_nnz
SparseTensor.masked_select = masked_select
SparseTensor.masked_select_nnz = masked_select_nnz
rusty1s's avatar
rusty1s committed
434
SparseTensor.reduction = torch_sparse.reduce.reduction
rusty1s's avatar
rusty1s committed
435
436
437
438
SparseTensor.sum = torch_sparse.reduce.sum
SparseTensor.mean = torch_sparse.reduce.mean
SparseTensor.min = torch_sparse.reduce.min
SparseTensor.max = torch_sparse.reduce.max
rusty1s's avatar
rusty1s committed
439
440
441
SparseTensor.remove_diag = remove_diag
# SparseTensor.add = add
# SparseTensor.add_nnz = add_nnz
rusty1s's avatar
rusty1s committed
442

rusty1s's avatar
typo  
rusty1s committed
443
444
445
# def remove_diag(self):
#     raise NotImplementedError

rusty1s's avatar
rusty1s committed
446
447
448
#     def set_diag(self, value):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#     def __reduce(self, dim, reduce, only_nnz):
#         raise NotImplementedError

#     def sum(self, dim):
#         return self.__reduce(dim, reduce='add', only_nnz=True)

#     def prod(self, dim):
#         return self.__reduce(dim, reduce='mul', only_nnz=True)

#     def min(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def max(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def mean(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='mean', only_nnz=only_nnz)

#     def matmul(self, mat, reduce='add'):
#         assert self.numel() == self.nnz()  # Disallow multi-dimensional value
#         if torch.is_tensor(mat):
#             raise NotImplementedError
#         elif isinstance(mat, self.__class__):
#             assert reduce == 'add'
rusty1s's avatar
rusty1s committed
473
#           assert mat.numel() == mat.nnz()  # Disallow multi-dimensional value
rusty1s's avatar
rusty1s committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#             raise NotImplementedError
#         raise ValueError('Argument needs to be of type `torch.tensor` or '
#                          'type `torch_sparse.SparseTensor`.')

#     def __add__(self, other):
#         return self.add(other)

#     def __radd__(self, other):
#         return self.add(other)

#     def sub(self, layout=None):
#         raise NotImplementedError

#     def sub_(self, layout=None):
#         raise NotImplementedError

#     def mul(self, layout=None):
#         raise NotImplementedError

#     def mul_(self, layout=None):
#         raise NotImplementedError

#     def div(self, layout=None):
#         raise NotImplementedError

#     def div_(self, layout=None):
#         raise NotImplementedError