tensor.py 16.2 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from textwrap import indent

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
6
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from torch_sparse.transpose import t
rusty1s's avatar
rusty1s committed
9
from torch_sparse.narrow import narrow
rusty1s's avatar
rusty1s committed
10
11
12
from torch_sparse.select import select
from torch_sparse.index_select import index_select, index_select_nnz
from torch_sparse.masked_select import masked_select, masked_select_nnz
rusty1s's avatar
rusty1s committed
13
import torch_sparse.reduce
rusty1s's avatar
rusty1s committed
14
from torch_sparse.diag import remove_diag
rusty1s's avatar
rusty1s committed
15
16
17
18


class SparseTensor(object):
    def __init__(self, index, value=None, sparse_size=None, is_sorted=False):
rusty1s's avatar
rusty1s committed
19
20
        self.storage = SparseStorage(index, value, sparse_size,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
21
22
23
24

    @classmethod
    def from_storage(self, storage):
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
25
        self.storage = storage
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
        return self

    @classmethod
    def from_dense(self, mat):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()

        index = index.t().contiguous()
        value = mat[index[0], index[1]]
rusty1s's avatar
rusty1s committed
37
38
39
40
        return SparseTensor(index, value, mat.size()[:2], is_sorted=True)

    @classmethod
    def from_torch_sparse_coo_tensor(self, mat, is_sorted=False):
rusty1s's avatar
rusty1s committed
41
42
        return SparseTensor(mat._indices(), mat._values(),
                            mat.size()[:2], is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    @classmethod
    def from_scipy(self, mat):
        colptr = None
        if isinstance(mat, scipy.sparse.csc_matrix):
            colptr = torch.from_numpy(mat.indptr).to(torch.long)

        mat = mat.tocsr()
        rowptr = torch.from_numpy(mat.indptr).to(torch.long)
        mat = mat.tocoo()
        row = torch.from_numpy(mat.row).to(torch.long)
        col = torch.from_numpy(mat.col).to(torch.long)
        index = torch.stack([row, col], dim=0)
        value = torch.from_numpy(mat.data)
        size = mat.shape

rusty1s's avatar
rusty1s committed
59
60
        storage = SparseStorage(index, value, size, rowptr=rowptr,
                                colptr=colptr, is_sorted=True)
rusty1s's avatar
rusty1s committed
61
62

        return SparseTensor.from_storage(storage)
rusty1s's avatar
rusty1s committed
63

rusty1s's avatar
rusty1s committed
64
    @classmethod
rusty1s's avatar
rusty1s committed
65
66
67
    def eye(self, M, N=None, device=None, dtype=None, no_value=False,
            fill_cache=False):
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
68

rusty1s's avatar
rusty1s committed
69
        index = torch.empty((2, min(M, N)), dtype=torch.long, device=device)
rusty1s's avatar
rusty1s committed
70
71
72
73
74
        torch.arange(index.size(1), out=index[0])
        torch.arange(index.size(1), out=index[1])

        value = None
        if not no_value:
rusty1s's avatar
rusty1s committed
75
            value = torch.ones(index.size(1), dtype=dtype, device=device)
rusty1s's avatar
rusty1s committed
76
77
78

        rowcount = rowptr = colcount = colptr = csr2csc = csc2csr = None
        if fill_cache:
rusty1s's avatar
rusty1s committed
79
80
81
82
83
84
85
86
87
88
            rowcount = index.new_ones(M)
            rowptr = torch.arange(M + 1, device=device)
            if M > N:
                rowcount[index.size(1):] = 0
                rowptr[index.size(1) + 1:] = index.size(1)
            colcount = index.new_ones(N)
            colptr = torch.arange(N + 1, device=device)
            if N > M:
                colcount[index.size(1):] = 0
                colptr[index.size(1) + 1:] = index.size(1)
rusty1s's avatar
rusty1s committed
89
90
91
92
93
94
            csr2csc = torch.arange(index.size(1), device=device)
            csc2csr = torch.arange(index.size(1), device=device)

        storage = SparseStorage(
            index,
            value,
rusty1s's avatar
rusty1s committed
95
            torch.Size([M, N]),
rusty1s's avatar
rusty1s committed
96
97
98
99
100
101
102
103
104
105
            rowcount=rowcount,
            rowptr=rowptr,
            colcount=colcount,
            colptr=colptr,
            csr2csc=csr2csc,
            csc2csr=csc2csr,
            is_sorted=True,
        )
        return SparseTensor.from_storage(storage)

rusty1s's avatar
rusty1s committed
106
    def __copy__(self):
rusty1s's avatar
rusty1s committed
107
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
108
109

    def clone(self):
rusty1s's avatar
rusty1s committed
110
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
111
112
113
114
115
116
117
118
119

    def __deepcopy__(self, memo):
        new_sparse_tensor = self.clone()
        memo[id(self)] = new_sparse_tensor
        return new_sparse_tensor

    # Formats #################################################################

    def coo(self):
rusty1s's avatar
rusty1s committed
120
        return self.storage.index, self.storage.value
rusty1s's avatar
rusty1s committed
121
122

    def csr(self):
rusty1s's avatar
rusty1s committed
123
        return self.storage.rowptr, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
124
125

    def csc(self):
rusty1s's avatar
fixes  
rusty1s committed
126
        perm = self.storage.csr2csc  # Compute `csr2csc` first.
rusty1s's avatar
rusty1s committed
127
128
        return (self.storage.colptr, self.storage.row[perm],
                self.storage.value[perm] if self.has_value() else None)
rusty1s's avatar
rusty1s committed
129
130
131
132

    # Storage inheritance #####################################################

    def has_value(self):
rusty1s's avatar
rusty1s committed
133
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
134
135

    def set_value_(self, value, layout=None):
rusty1s's avatar
rusty1s committed
136
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
137
138
139
        return self

    def set_value(self, value, layout=None):
rusty1s's avatar
rusty1s committed
140
        return self.from_storage(self.storage.set_value(value, layout))
rusty1s's avatar
rusty1s committed
141
142

    def sparse_size(self, dim=None):
rusty1s's avatar
rusty1s committed
143
        return self.storage.sparse_size(dim)
rusty1s's avatar
rusty1s committed
144

rusty1s's avatar
rusty1s committed
145
146
    def sparse_resize(self, *sizes):
        return self.from_storage(self.storage.sparse_resize(*sizes))
rusty1s's avatar
rusty1s committed
147
148

    def is_coalesced(self):
rusty1s's avatar
rusty1s committed
149
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
150

rusty1s's avatar
rusty1s committed
151
152
    def coalesce(self, reduce='add'):
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
153
154

    def cached_keys(self):
rusty1s's avatar
rusty1s committed
155
        return self.storage.cached_keys()
rusty1s's avatar
rusty1s committed
156
157

    def fill_cache_(self, *args):
rusty1s's avatar
rusty1s committed
158
        self.storage.fill_cache_(*args)
rusty1s's avatar
rusty1s committed
159
160
161
        return self

    def clear_cache_(self, *args):
rusty1s's avatar
rusty1s committed
162
        self.storage.clear_cache_(*args)
rusty1s's avatar
rusty1s committed
163
164
165
166
167
168
        return self

    # Utility functions #######################################################

    def size(self, dim=None):
        size = self.sparse_size()
rusty1s's avatar
rusty1s committed
169
        size += self.storage.value.size()[1:] if self.has_value() else ()
rusty1s's avatar
rusty1s committed
170
171
172
173
174
175
176
177
178
179
        return size if dim is None else size[dim]

    def dim(self):
        return len(self.size())

    @property
    def shape(self):
        return self.size()

    def nnz(self):
rusty1s's avatar
rusty1s committed
180
        return self.storage.index.size(1)
rusty1s's avatar
rusty1s committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    def density(self):
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self):
        return 1 - self.density()

    def avg_row_length(self):
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self):
        return self.nnz() / self.sparse_size(1)

    def numel(self):
        return self.value.numel() if self.has_value() else self.nnz()

    def is_quadratic(self):
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self):
        if not self.is_quadratic:
            return False

        rowptr, col, val1 = self.csr()
        colptr, row, val2 = self.csc()
rusty1s's avatar
rusty1s committed
206
207
208
        index_sym = (rowptr == colptr).all() and (col == row).all()
        value_sym = (val1 == val2).all().item() if self.has_value() else True
        return index_sym.item() and value_sym
rusty1s's avatar
rusty1s committed
209
210

    def detach_(self):
rusty1s's avatar
rusty1s committed
211
        self.storage.apply_(lambda x: x.detach_())
rusty1s's avatar
rusty1s committed
212
213
214
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
215
        return self.from_storage(self.storage.apply(lambda x: x.detach()))
rusty1s's avatar
rusty1s committed
216

rusty1s's avatar
rusty1s committed
217
218
219
220
221
222
223
224
225
    @property
    def requires_grad(self):
        return self.storage.value.requires_grad if self.has_value() else False

    def requires_grad_(self, requires_grad=True):
        if self.has_value():
            self.storage.value.requires_grad_(requires_grad)
        return self

rusty1s's avatar
rusty1s committed
226
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
227
        return self.from_storage(self.storage.apply(lambda x: x.pin_memory()))
rusty1s's avatar
rusty1s committed
228
229

    def is_pinned(self):
rusty1s's avatar
rusty1s committed
230
        return all(self.storage.map(lambda x: x.is_pinned()))
rusty1s's avatar
rusty1s committed
231
232

    def share_memory_(self):
rusty1s's avatar
rusty1s committed
233
        self.storage.apply_(lambda x: x.share_memory_())
rusty1s's avatar
rusty1s committed
234
235
236
        return self

    def is_shared(self):
rusty1s's avatar
rusty1s committed
237
        return all(self.storage.map(lambda x: x.is_shared()))
rusty1s's avatar
rusty1s committed
238
239
240

    @property
    def device(self):
rusty1s's avatar
rusty1s committed
241
        return self.storage.index.device
rusty1s's avatar
rusty1s committed
242
243

    def cpu(self):
rusty1s's avatar
rusty1s committed
244
        return self.from_storage(self.storage.apply(lambda x: x.cpu()))
rusty1s's avatar
rusty1s committed
245
246

    def cuda(self, device=None, non_blocking=False, **kwargs):
rusty1s's avatar
rusty1s committed
247
248
        storage = self.storage.apply(
            lambda x: x.cuda(device, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
249
        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
250
251
252

    @property
    def is_cuda(self):
rusty1s's avatar
rusty1s committed
253
        return self.storage.index.is_cuda
rusty1s's avatar
rusty1s committed
254
255
256

    @property
    def dtype(self):
rusty1s's avatar
rusty1s committed
257
        return self.storage.value.dtype if self.has_value() else None
rusty1s's avatar
rusty1s committed
258
259

    def is_floating_point(self):
rusty1s's avatar
rusty1s committed
260
        value = self.storage.value
rusty1s's avatar
rusty1s committed
261
262
263
264
265
266
267
268
269
        return self.has_value() and torch.is_floating_point(value)

    def type(self, dtype=None, non_blocking=False, **kwargs):
        if dtype is None:
            return self.dtype

        if dtype == self.dtype:
            return self

rusty1s's avatar
rusty1s committed
270
271
        storage = self.storage.apply_value(
            lambda x: x.type(dtype, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
272
273

        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
274
275
276
277
278
279
280

    def to(self, *args, **kwargs):
        storage = None

        if 'device' in kwargs:
            device = kwargs['device']
            del kwargs['device']
rusty1s's avatar
rusty1s committed
281
            storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
282
283
284
285
                device, non_blocking=getattr(kwargs, 'non_blocking', False)))

        for arg in args[:]:
            if isinstance(arg, str) or isinstance(arg, torch.device):
rusty1s's avatar
rusty1s committed
286
                storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
287
288
289
290
                    arg, non_blocking=getattr(kwargs, 'non_blocking', False)))
                args.remove(arg)

        if storage is not None:
rusty1s's avatar
rusty1s committed
291
            self = self.from_storage(storage)
rusty1s's avatar
rusty1s committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

        if len(args) > 0 or len(kwargs) > 0:
            self = self.type(*args, **kwargs)

        return self

    def bfloat16(self):
        return self.type(torch.bfloat16)

    def bool(self):
        return self.type(torch.bool)

    def byte(self):
        return self.type(torch.byte)

    def char(self):
        return self.type(torch.char)

    def half(self):
        return self.type(torch.half)

    def float(self):
        return self.type(torch.float)

    def double(self):
        return self.type(torch.double)

    def short(self):
        return self.type(torch.short)

    def int(self):
        return self.type(torch.int)

    def long(self):
        return self.type(torch.long)

    # Conversions #############################################################

    def to_dense(self, dtype=None):
        dtype = dtype or self.dtype
        (row, col), value = self.coo()
        mat = torch.zeros(self.size(), dtype=dtype, device=self.device)
        mat[row, col] = value if self.has_value() else 1
        return mat

    def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False):
        index, value = self.coo()
        return torch.sparse_coo_tensor(
rusty1s's avatar
rusty1s committed
340
341
342
            index, value if self.has_value() else torch.ones(
                self.nnz(), dtype=dtype, device=self.device), self.size(),
            device=self.device, requires_grad=requires_grad)
rusty1s's avatar
rusty1s committed
343
344

    def to_scipy(self, dtype=None, layout=None):
rusty1s's avatar
rusty1s committed
345
        assert self.dim() == 2
rusty1s's avatar
rusty1s committed
346
        layout = get_layout(layout)
rusty1s's avatar
rusty1s committed
347

rusty1s's avatar
rusty1s committed
348
349
        if not self.has_value():
            ones = torch.ones(self.nnz(), dtype=dtype).numpy()
rusty1s's avatar
rusty1s committed
350
351

        if layout == 'coo':
rusty1s's avatar
rusty1s committed
352
353
354
355
            (row, col), value = self.coo()
            row = row.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
356
357
            return scipy.sparse.coo_matrix((value, (row, col)), self.size())
        elif layout == 'csr':
rusty1s's avatar
rusty1s committed
358
359
360
361
            rowptr, col, value = self.csr()
            rowptr = rowptr.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
362
363
            return scipy.sparse.csr_matrix((value, col, rowptr), self.size())
        elif layout == 'csc':
rusty1s's avatar
rusty1s committed
364
365
366
367
            colptr, row, value = self.csc()
            colptr = colptr.detach().cpu().numpy()
            row = row.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
368
369
            return scipy.sparse.csc_matrix((value, row, colptr), self.size())

rusty1s's avatar
rusty1s committed
370
371
372
373
    # Standard Operators ######################################################

    def __getitem__(self, index):
        index = list(index) if isinstance(index, tuple) else [index]
rusty1s's avatar
typo  
rusty1s committed
374
        # More than one `Ellipsis` is not allowed...
rusty1s's avatar
rusty1s committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
            raise SyntaxError()

        dim = 0
        out = self
        while len(index) > 0:
            item = index.pop(0)
            if isinstance(item, int):
                out = out.select(dim, item)
                dim += 1
            elif isinstance(item, slice):
                if item.step is not None:
                    raise ValueError('Step parameter not yet supported.')

                start = 0 if item.start is None else item.start
                start = self.size(dim) + start if start < 0 else start

                stop = self.size(dim) if item.stop is None else item.stop
                stop = self.size(dim) + stop if stop < 0 else stop

                out = out.narrow(dim, start, max(stop - start, 0))
                dim += 1
            elif torch.is_tensor(item):
                if item.dtype == torch.bool:
                    out = out.masked_select(dim, item)
                    dim += 1
                elif item.dtype == torch.long:
                    out = out.index_select(dim, item)
                    dim += 1
            elif item == Ellipsis:
                if self.dim() - len(index) < dim:
                    raise SyntaxError()
                dim = self.dim() - len(index)
            else:
                raise SyntaxError()

        return out

rusty1s's avatar
rusty1s committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    # String Reputation #######################################################

    def __repr__(self):
        i = ' ' * 6
        index, value = self.coo()
        infos = [f'index={indent(index.__repr__(), i)[len(i):]}']

        if self.has_value():
            infos += [f'value={indent(value.__repr__(), i)[len(i):]}']

        infos += [
            f'size={tuple(self.size())}, '
            f'nnz={self.nnz()}, '
            f'density={100 * self.density():.02f}%'
        ]
        infos = ',\n'.join(infos)

        i = ' ' * (len(self.__class__.__name__) + 1)
        return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
435

rusty1s's avatar
rusty1s committed
436
SparseTensor.t = t
rusty1s's avatar
rusty1s committed
437
SparseTensor.narrow = narrow
rusty1s's avatar
rusty1s committed
438
439
440
441
442
SparseTensor.select = select
SparseTensor.index_select = index_select
SparseTensor.index_select_nnz = index_select_nnz
SparseTensor.masked_select = masked_select
SparseTensor.masked_select_nnz = masked_select_nnz
rusty1s's avatar
rusty1s committed
443
SparseTensor.reduction = torch_sparse.reduce.reduction
rusty1s's avatar
rusty1s committed
444
445
446
447
SparseTensor.sum = torch_sparse.reduce.sum
SparseTensor.mean = torch_sparse.reduce.mean
SparseTensor.min = torch_sparse.reduce.min
SparseTensor.max = torch_sparse.reduce.max
rusty1s's avatar
rusty1s committed
448
449
450
SparseTensor.remove_diag = remove_diag
# SparseTensor.add = add
# SparseTensor.add_nnz = add_nnz
rusty1s's avatar
rusty1s committed
451

rusty1s's avatar
typo  
rusty1s committed
452
453
454
# def remove_diag(self):
#     raise NotImplementedError

rusty1s's avatar
rusty1s committed
455
456
457
#     def set_diag(self, value):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#     def __reduce(self, dim, reduce, only_nnz):
#         raise NotImplementedError

#     def sum(self, dim):
#         return self.__reduce(dim, reduce='add', only_nnz=True)

#     def prod(self, dim):
#         return self.__reduce(dim, reduce='mul', only_nnz=True)

#     def min(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def max(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def mean(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='mean', only_nnz=only_nnz)

#     def matmul(self, mat, reduce='add'):
#         assert self.numel() == self.nnz()  # Disallow multi-dimensional value
#         if torch.is_tensor(mat):
#             raise NotImplementedError
#         elif isinstance(mat, self.__class__):
#             assert reduce == 'add'
rusty1s's avatar
rusty1s committed
482
#           assert mat.numel() == mat.nnz()  # Disallow multi-dimensional value
rusty1s's avatar
rusty1s committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#             raise NotImplementedError
#         raise ValueError('Argument needs to be of type `torch.tensor` or '
#                          'type `torch_sparse.SparseTensor`.')

#     def __add__(self, other):
#         return self.add(other)

#     def __radd__(self, other):
#         return self.add(other)

#     def sub(self, layout=None):
#         raise NotImplementedError

#     def sub_(self, layout=None):
#         raise NotImplementedError

#     def mul(self, layout=None):
#         raise NotImplementedError

#     def mul_(self, layout=None):
#         raise NotImplementedError

#     def div(self, layout=None):
#         raise NotImplementedError

#     def div_(self, layout=None):
#         raise NotImplementedError