"vscode:/vscode.git/clone" did not exist on "39bb2ce06301d8085e8003a7e536aa72d5c969c6"
tensor.py 19.2 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from textwrap import indent

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
6
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from torch_sparse.transpose import t
rusty1s's avatar
rusty1s committed
9
from torch_sparse.narrow import narrow
rusty1s's avatar
rusty1s committed
10
11
12
from torch_sparse.select import select
from torch_sparse.index_select import index_select, index_select_nnz
from torch_sparse.masked_select import masked_select, masked_select_nnz
rusty1s's avatar
rusty1s committed
13
from torch_sparse.add import add, add_nnz
rusty1s's avatar
rusty1s committed
14
15
16
17


class SparseTensor(object):
    def __init__(self, index, value=None, sparse_size=None, is_sorted=False):
rusty1s's avatar
rusty1s committed
18
19
        self.storage = SparseStorage(
            index, value, sparse_size, is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
20
21
22
23

    @classmethod
    def from_storage(self, storage):
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
24
        self.storage = storage
rusty1s's avatar
rusty1s committed
25
26
27
28
29
30
31
32
33
34
35
        return self

    @classmethod
    def from_dense(self, mat):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()

        index = index.t().contiguous()
        value = mat[index[0], index[1]]
rusty1s's avatar
rusty1s committed
36
37
38
39
        return SparseTensor(index, value, mat.size()[:2], is_sorted=True)

    @classmethod
    def from_torch_sparse_coo_tensor(self, mat, is_sorted=False):
rusty1s's avatar
rusty1s committed
40
41
        return SparseTensor(
            mat._indices(), mat._values(), mat.size()[:2], is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

    @classmethod
    def from_scipy(self, mat):
        colptr = None
        if isinstance(mat, scipy.sparse.csc_matrix):
            colptr = torch.from_numpy(mat.indptr).to(torch.long)

        mat = mat.tocsr()
        rowptr = torch.from_numpy(mat.indptr).to(torch.long)
        mat = mat.tocoo()
        row = torch.from_numpy(mat.row).to(torch.long)
        col = torch.from_numpy(mat.col).to(torch.long)
        index = torch.stack([row, col], dim=0)
        value = torch.from_numpy(mat.data)
        size = mat.shape

rusty1s's avatar
rusty1s committed
58
59
        storage = SparseStorage(
            index, value, size, rowptr=rowptr, colptr=colptr, is_sorted=True)
rusty1s's avatar
rusty1s committed
60
61

        return SparseTensor.from_storage(storage)
rusty1s's avatar
rusty1s committed
62
63

    def __copy__(self):
rusty1s's avatar
rusty1s committed
64
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
65
66

    def clone(self):
rusty1s's avatar
rusty1s committed
67
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
68
69
70
71
72
73
74
75
76

    def __deepcopy__(self, memo):
        new_sparse_tensor = self.clone()
        memo[id(self)] = new_sparse_tensor
        return new_sparse_tensor

    # Formats #################################################################

    def coo(self):
rusty1s's avatar
rusty1s committed
77
        return self.storage.index, self.storage.value
rusty1s's avatar
rusty1s committed
78
79

    def csr(self):
rusty1s's avatar
rusty1s committed
80
        return self.storage.rowptr, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
81
82

    def csc(self):
rusty1s's avatar
rusty1s committed
83
84
85
        perm = self.storage.csr2csc
        return (self.storage.colptr, self.storage.row[perm],
                self.storage.value[perm] if self.has_value() else None)
rusty1s's avatar
rusty1s committed
86
87
88
89

    # Storage inheritance #####################################################

    def has_value(self):
rusty1s's avatar
rusty1s committed
90
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
91
92

    def set_value_(self, value, layout=None):
rusty1s's avatar
rusty1s committed
93
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
94
95
96
        return self

    def set_value(self, value, layout=None):
rusty1s's avatar
rusty1s committed
97
        return self.from_storage(self.storage.set_value(value, layout))
rusty1s's avatar
rusty1s committed
98
99

    def sparse_size(self, dim=None):
rusty1s's avatar
rusty1s committed
100
        return self.storage.sparse_size(dim)
rusty1s's avatar
rusty1s committed
101
102

    def sparse_resize_(self, *sizes):
rusty1s's avatar
rusty1s committed
103
        self.storage.sparse_resize_(*sizes)
rusty1s's avatar
rusty1s committed
104
105
106
        return self

    def is_coalesced(self):
rusty1s's avatar
rusty1s committed
107
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
108

rusty1s's avatar
rusty1s committed
109
110
    def coalesce(self, reduce='add'):
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
111
112

    def cached_keys(self):
rusty1s's avatar
rusty1s committed
113
        return self.storage.cached_keys()
rusty1s's avatar
rusty1s committed
114
115

    def fill_cache_(self, *args):
rusty1s's avatar
rusty1s committed
116
        self.storage.fill_cache_(*args)
rusty1s's avatar
rusty1s committed
117
118
119
        return self

    def clear_cache_(self, *args):
rusty1s's avatar
rusty1s committed
120
        self.storage.clear_cache_(*args)
rusty1s's avatar
rusty1s committed
121
122
123
124
125
126
        return self

    # Utility functions #######################################################

    def size(self, dim=None):
        size = self.sparse_size()
rusty1s's avatar
rusty1s committed
127
        size += self.storage.value.size()[1:] if self.has_value() else ()
rusty1s's avatar
rusty1s committed
128
129
130
131
132
133
134
135
136
137
        return size if dim is None else size[dim]

    def dim(self):
        return len(self.size())

    @property
    def shape(self):
        return self.size()

    def nnz(self):
rusty1s's avatar
rusty1s committed
138
        return self.storage.index.size(1)
rusty1s's avatar
rusty1s committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    def density(self):
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self):
        return 1 - self.density()

    def avg_row_length(self):
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self):
        return self.nnz() / self.sparse_size(1)

    def numel(self):
        return self.value.numel() if self.has_value() else self.nnz()

    def is_quadratic(self):
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self):
        if not self.is_quadratic:
            return False

        rowptr, col, val1 = self.csr()
        colptr, row, val2 = self.csc()
rusty1s's avatar
rusty1s committed
164
165
166
        index_sym = (rowptr == colptr).all() and (col == row).all()
        value_sym = (val1 == val2).all().item() if self.has_value() else True
        return index_sym.item() and value_sym
rusty1s's avatar
rusty1s committed
167
168

    def detach_(self):
rusty1s's avatar
rusty1s committed
169
        self.storage.apply_(lambda x: x.detach_())
rusty1s's avatar
rusty1s committed
170
171
172
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
173
        return self.from_storage(self.storage.apply(lambda x: x.detach()))
rusty1s's avatar
rusty1s committed
174
175

    def pin_memory(self):
rusty1s's avatar
rusty1s committed
176
        return self.from_storage(self.storage.apply(lambda x: x.pin_memory()))
rusty1s's avatar
rusty1s committed
177
178

    def is_pinned(self):
rusty1s's avatar
rusty1s committed
179
        return all(self.storage.map(lambda x: x.is_pinned()))
rusty1s's avatar
rusty1s committed
180
181

    def share_memory_(self):
rusty1s's avatar
rusty1s committed
182
        self.storage.apply_(lambda x: x.share_memory_())
rusty1s's avatar
rusty1s committed
183
184
185
        return self

    def is_shared(self):
rusty1s's avatar
rusty1s committed
186
        return all(self.storage.map(lambda x: x.is_shared()))
rusty1s's avatar
rusty1s committed
187
188
189

    @property
    def device(self):
rusty1s's avatar
rusty1s committed
190
        return self.storage.index.device
rusty1s's avatar
rusty1s committed
191
192

    def cpu(self):
rusty1s's avatar
rusty1s committed
193
        return self.from_storage(self.storage.apply(lambda x: x.cpu()))
rusty1s's avatar
rusty1s committed
194
195

    def cuda(self, device=None, non_blocking=False, **kwargs):
rusty1s's avatar
rusty1s committed
196
197
        storage = self.storage.apply(lambda x: x.cuda(device, non_blocking, **
                                                      kwargs))
rusty1s's avatar
rusty1s committed
198
        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
199
200
201

    @property
    def is_cuda(self):
rusty1s's avatar
rusty1s committed
202
        return self.storage.index.is_cuda
rusty1s's avatar
rusty1s committed
203
204
205

    @property
    def dtype(self):
rusty1s's avatar
rusty1s committed
206
        return self.storage.value.dtype if self.has_value() else None
rusty1s's avatar
rusty1s committed
207
208

    def is_floating_point(self):
rusty1s's avatar
rusty1s committed
209
        value = self.storage.value
rusty1s's avatar
rusty1s committed
210
211
212
213
214
215
216
217
218
        return self.has_value() and torch.is_floating_point(value)

    def type(self, dtype=None, non_blocking=False, **kwargs):
        if dtype is None:
            return self.dtype

        if dtype == self.dtype:
            return self

rusty1s's avatar
rusty1s committed
219
220
        storage = self.storage.apply_value(lambda x: x.type(
            dtype, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
221
222

        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
223
224
225
226
227
228
229

    def to(self, *args, **kwargs):
        storage = None

        if 'device' in kwargs:
            device = kwargs['device']
            del kwargs['device']
rusty1s's avatar
rusty1s committed
230
            storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
231
232
233
234
                device, non_blocking=getattr(kwargs, 'non_blocking', False)))

        for arg in args[:]:
            if isinstance(arg, str) or isinstance(arg, torch.device):
rusty1s's avatar
rusty1s committed
235
                storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
236
237
238
239
                    arg, non_blocking=getattr(kwargs, 'non_blocking', False)))
                args.remove(arg)

        if storage is not None:
rusty1s's avatar
rusty1s committed
240
            self = self.from_storage(storage)
rusty1s's avatar
rusty1s committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

        if len(args) > 0 or len(kwargs) > 0:
            self = self.type(*args, **kwargs)

        return self

    def bfloat16(self):
        return self.type(torch.bfloat16)

    def bool(self):
        return self.type(torch.bool)

    def byte(self):
        return self.type(torch.byte)

    def char(self):
        return self.type(torch.char)

    def half(self):
        return self.type(torch.half)

    def float(self):
        return self.type(torch.float)

    def double(self):
        return self.type(torch.double)

    def short(self):
        return self.type(torch.short)

    def int(self):
        return self.type(torch.int)

    def long(self):
        return self.type(torch.long)

    # Conversions #############################################################

    def to_dense(self, dtype=None):
        dtype = dtype or self.dtype
        (row, col), value = self.coo()
        mat = torch.zeros(self.size(), dtype=dtype, device=self.device)
        mat[row, col] = value if self.has_value() else 1
        return mat

    def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False):
        index, value = self.coo()
        return torch.sparse_coo_tensor(
rusty1s's avatar
rusty1s committed
289
290
291
292
293
294
            index,
            value if self.has_value() else torch.ones(
                self.nnz(), dtype=dtype, device=self.device),
            self.size(),
            device=self.device,
            requires_grad=requires_grad)
rusty1s's avatar
rusty1s committed
295
296

    def to_scipy(self, dtype=None, layout=None):
rusty1s's avatar
rusty1s committed
297
        assert self.dim() == 2
rusty1s's avatar
rusty1s committed
298
        layout = get_layout(layout)
rusty1s's avatar
rusty1s committed
299

rusty1s's avatar
rusty1s committed
300
301
        if not self.has_value():
            ones = torch.ones(self.nnz(), dtype=dtype).numpy()
rusty1s's avatar
rusty1s committed
302
303

        if layout == 'coo':
rusty1s's avatar
rusty1s committed
304
305
306
307
            (row, col), value = self.coo()
            row = row.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
308
309
            return scipy.sparse.coo_matrix((value, (row, col)), self.size())
        elif layout == 'csr':
rusty1s's avatar
rusty1s committed
310
311
312
313
            rowptr, col, value = self.csr()
            rowptr = rowptr.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
314
315
            return scipy.sparse.csr_matrix((value, col, rowptr), self.size())
        elif layout == 'csc':
rusty1s's avatar
rusty1s committed
316
317
318
319
            colptr, row, value = self.csc()
            colptr = colptr.detach().cpu().numpy()
            row = row.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
320
321
            return scipy.sparse.csc_matrix((value, row, colptr), self.size())

rusty1s's avatar
rusty1s committed
322
323
324
325
    # Standard Operators ######################################################

    def __getitem__(self, index):
        index = list(index) if isinstance(index, tuple) else [index]
rusty1s's avatar
typo  
rusty1s committed
326
        # More than one `Ellipsis` is not allowed...
rusty1s's avatar
rusty1s committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
            raise SyntaxError()

        dim = 0
        out = self
        while len(index) > 0:
            item = index.pop(0)
            if isinstance(item, int):
                out = out.select(dim, item)
                dim += 1
            elif isinstance(item, slice):
                if item.step is not None:
                    raise ValueError('Step parameter not yet supported.')

                start = 0 if item.start is None else item.start
                start = self.size(dim) + start if start < 0 else start

                stop = self.size(dim) if item.stop is None else item.stop
                stop = self.size(dim) + stop if stop < 0 else stop

                out = out.narrow(dim, start, max(stop - start, 0))
                dim += 1
            elif torch.is_tensor(item):
                if item.dtype == torch.bool:
                    out = out.masked_select(dim, item)
                    dim += 1
                elif item.dtype == torch.long:
                    out = out.index_select(dim, item)
                    dim += 1
            elif item == Ellipsis:
                if self.dim() - len(index) < dim:
                    raise SyntaxError()
                dim = self.dim() - len(index)
            else:
                raise SyntaxError()

        return out

rusty1s's avatar
rusty1s committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    # String Reputation #######################################################

    def __repr__(self):
        i = ' ' * 6
        index, value = self.coo()
        infos = [f'index={indent(index.__repr__(), i)[len(i):]}']

        if self.has_value():
            infos += [f'value={indent(value.__repr__(), i)[len(i):]}']

        infos += [
            f'size={tuple(self.size())}, '
            f'nnz={self.nnz()}, '
            f'density={100 * self.density():.02f}%'
        ]
        infos = ',\n'.join(infos)

        i = ' ' * (len(self.__class__.__name__) + 1)
        return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
387

rusty1s's avatar
rusty1s committed
388
SparseTensor.t = t
rusty1s's avatar
rusty1s committed
389
SparseTensor.narrow = narrow
rusty1s's avatar
rusty1s committed
390
391
392
393
394
SparseTensor.select = select
SparseTensor.index_select = index_select
SparseTensor.index_select_nnz = index_select_nnz
SparseTensor.masked_select = masked_select
SparseTensor.masked_select_nnz = masked_select_nnz
rusty1s's avatar
rusty1s committed
395
396
SparseTensor.add = add
SparseTensor.add_nnz = add_nnz
rusty1s's avatar
rusty1s committed
397

rusty1s's avatar
typo  
rusty1s committed
398
399
400
# def remove_diag(self):
#     raise NotImplementedError

rusty1s's avatar
rusty1s committed
401
402
403
#     def set_diag(self, value):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#     def __reduce(self, dim, reduce, only_nnz):
#         raise NotImplementedError

#     def sum(self, dim):
#         return self.__reduce(dim, reduce='add', only_nnz=True)

#     def prod(self, dim):
#         return self.__reduce(dim, reduce='mul', only_nnz=True)

#     def min(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def max(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def mean(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='mean', only_nnz=only_nnz)

#     def matmul(self, mat, reduce='add'):
#         assert self.numel() == self.nnz()  # Disallow multi-dimensional value
#         if torch.is_tensor(mat):
#             raise NotImplementedError
#         elif isinstance(mat, self.__class__):
#             assert reduce == 'add'
rusty1s's avatar
rusty1s committed
428
#           assert mat.numel() == mat.nnz()  # Disallow multi-dimensional value
rusty1s's avatar
rusty1s committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#             raise NotImplementedError
#         raise ValueError('Argument needs to be of type `torch.tensor` or '
#                          'type `torch_sparse.SparseTensor`.')

#     def __add__(self, other):
#         return self.add(other)

#     def __radd__(self, other):
#         return self.add(other)

#     def sub(self, layout=None):
#         raise NotImplementedError

#     def sub_(self, layout=None):
#         raise NotImplementedError

#     def mul(self, layout=None):
#         raise NotImplementedError

#     def mul_(self, layout=None):
#         raise NotImplementedError

#     def div(self, layout=None):
#         raise NotImplementedError

#     def div_(self, layout=None):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
457
458
459
if __name__ == '__main__':
    from torch_geometric.datasets import Reddit, Planetoid  # noqa
    import time  # noqa
rusty1s's avatar
rusty1s committed
460

rusty1s's avatar
rusty1s committed
461
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
462
    # device = 'cpu'
rusty1s's avatar
rusty1s committed
463

rusty1s's avatar
rusty1s committed
464
    # dataset = Reddit('/tmp/Reddit')
465
    dataset = Planetoid('/tmp/PubMed', 'PubMed')
rusty1s's avatar
rusty1s committed
466
    data = dataset[0].to(device)
rusty1s's avatar
rusty1s committed
467

468
469
470
471
    # value = torch.randn(data.num_edges, 10)
    mat = SparseTensor(data.edge_index)
    perm = torch.arange(data.num_nodes)
    perm = torch.randperm(data.num_nodes)
rusty1s's avatar
rusty1s committed
472

rusty1s's avatar
rusty1s committed
473
474
475
476
477
478
    mat1 = SparseTensor(torch.tensor([[0, 1], [0, 1]]))
    mat2 = SparseTensor(torch.tensor([[0, 0, 1], [0, 1, 0]]))
    add(mat1, mat2)
    # print(mat2)
    raise NotImplementedError

479
480
    for _ in range(10):
        x = torch.randn(1000, 1000, device=device).sum()
rusty1s's avatar
rusty1s committed
481

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    torch.cuda.synchronize()
    t = time.perf_counter()
    for _ in range(100):
        mat[perm]
    torch.cuda.synchronize()
    print(time.perf_counter() - t)

    # index = torch.tensor([
    #     [0, 1, 1, 2, 2],
    #     [1, 2, 2, 2, 3],
    # ])
    # value = torch.tensor([1, 2, 3, 4, 5])

    # mat = SparseTensor(index, value)
    # print(mat)
    # print(mat.coalesce())
rusty1s's avatar
rusty1s committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

    # index = torch.tensor([0, 1, 2])
    # mask = torch.zeros(data.num_nodes, dtype=torch.bool)
    # mask[:3] = True

    # print(mat[1].size())
    # print(mat[1, 1].size())
    # print(mat[..., -1].size())
    # print(mat[:10, ..., -1].size())
    # print(mat[:, -1].size())
    # print(mat[1, :, -1].size())
    # print(mat[1:4, 1:4].size())
    # print(mat[index].size())
    # print(mat[index, index].size())
    # print(mat[mask, index].size())
rusty1s's avatar
rusty1s committed
513
514
515
516
517
518
519
520
521
522
523
    # mat[::-1]
    # mat[::2]

    # mat1 = SparseTensor.from_dense(mat1.to_dense())

    # print(mat1)
    # mat = SparseTensor.from_torch_sparse_coo_tensor(
    #     mat1.to_torch_sparse_coo_tensor())

    # mat = SparseTensor.from_scipy(mat.to_scipy(layout='csc'))
    # print(mat)
rusty1s's avatar
rusty1s committed
524

rusty1s's avatar
rusty1s committed
525
526
    # index = torch.tensor([0, 2])
    # mat2 = mat1.index_select(2, index)
rusty1s's avatar
rusty1s committed
527

rusty1s's avatar
rusty1s committed
528
529
530
    # index = torch.randperm(data.num_nodes)[:data.num_nodes - 500]
    # mask = torch.zeros(data.num_nodes, dtype=torch.bool)
    # mask[index] = True
rusty1s's avatar
rusty1s committed
531

rusty1s's avatar
rusty1s committed
532
533
534
535
536
537
538
539
540
    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.index_select(0, index)
    # print(time.perf_counter() - t)

    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.masked_select(0, mask)
    # print(time.perf_counter() - t)
rusty1s's avatar
rusty1s committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

    # mat2 = mat1.narrow(1, start=0, length=3)
    # print(mat2)

    # index = torch.randperm(data.num_nodes)
    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.index_select(0, index)
    # print(time.perf_counter() - t)

    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.index_select(1, index)
    # print(time.perf_counter() - t)
    # raise NotImplementedError

    # t = time.perf_counter()
    # for _ in range(1000):
    #     mat2 = mat1.t().index_select(0, index).t()
    # print(time.perf_counter() - t)

rusty1s's avatar
rusty1s committed
562
    # print(mat1)
rusty1s's avatar
rusty1s committed
563
564
565
566
567
568
569
570
571
572
573
574
575
    # mat1.index_select((0, 1), torch.tensor([0, 1, 2, 3, 4]))

    # print(mat3)
    # print(mat3.storage.rowcount)

    # print(mat1)

    # (row, col), value = mat1.coo()
    # mask = row < 3
    # t = time.perf_counter()
    # for _ in range(10000):
    #     mat2 = mat1.narrow(1, start=10, length=2690)
    # print(time.perf_counter() - t)
rusty1s's avatar
rusty1s committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

    # # print(mat1.to_dense().size())
    # print(mat1.to_torch_sparse_coo_tensor().to_dense().size())
    # print(mat1.to_scipy(layout='coo').todense().shape)
    # print(mat1.to_scipy(layout='csr').todense().shape)
    # print(mat1.to_scipy(layout='csc').todense().shape)

    # print(mat1.is_quadratic())
    # print(mat1.is_symmetric())

    # print(mat1.cached_keys())
    # mat1 = mat1.t()
    # print(mat1.cached_keys())
    # mat1 = mat1.t()
    # print(mat1.cached_keys())
    # print('-------- NARROW ----------')

rusty1s's avatar
rusty1s committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    # t = time.perf_counter()
    # for _ in range(100):
    #     out = mat1.narrow(dim=0, start=10, length=10)
    #     # out.storage.colptr
    # print(time.perf_counter() - t)
    # print(out)
    # print(out.cached_keys())

    # t = time.perf_counter()
    # for _ in range(100):
    #     out = mat1.narrow(dim=1, start=10, length=2000)
    #     # out.storage.colptr
    # print(time.perf_counter() - t)
    # print(out)
    # print(out.cached_keys())
rusty1s's avatar
rusty1s committed
608
609

    # mat1 = mat1.narrow(0, start=10, length=10)
rusty1s's avatar
rusty1s committed
610
    # mat1.storage._value = torch.randn(mat1.nnz(), 20)
rusty1s's avatar
rusty1s committed
611
612
613
    # print(mat1.coo()[1].size())
    # mat1 = mat1.narrow(2, start=10, length=10)
    # print(mat1.coo()[1].size())
rusty1s's avatar
rusty1s committed
614
615
#     mat1 = mat1.t()

rusty1s's avatar
rusty1s committed
616
#   mat2 = torch.sparse_coo_tensor(data.edge_index, torch.ones(data.num_edges),
rusty1s's avatar
rusty1s committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#                                    device=device)
#     mat2 = mat2.coalesce()
#     mat2 = mat2.t().coalesce()

#     index1, value1 = mat1.coo()
#     index2, value2 = mat2._indices(), mat2._values()
#     assert torch.allclose(index1, index2)

#     out1 = mat1.to_dense()
#     out2 = mat2.to_dense()
#     assert torch.allclose(out1, out2)

#     out = 2 + mat1
#     print(out)

#     # mat1[1]
#     # mat1[1, 1]
#     # mat1[..., -1]
#     # mat1[:, -1]
#     # mat1[1:4, 1:4]
#     # mat1[torch.tensor([0, 1, 2])]