tensor.py 15.6 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from textwrap import indent

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
6
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from torch_sparse.transpose import t
rusty1s's avatar
rusty1s committed
9
from torch_sparse.narrow import narrow
rusty1s's avatar
rusty1s committed
10
11
12
from torch_sparse.select import select
from torch_sparse.index_select import index_select, index_select_nnz
from torch_sparse.masked_select import masked_select, masked_select_nnz
rusty1s's avatar
rusty1s committed
13
import torch_sparse.reduce
rusty1s's avatar
rusty1s committed
14
from torch_sparse.diag import remove_diag
rusty1s's avatar
rusty1s committed
15
16
17
18


class SparseTensor(object):
    def __init__(self, index, value=None, sparse_size=None, is_sorted=False):
rusty1s's avatar
rusty1s committed
19
20
        self.storage = SparseStorage(index, value, sparse_size,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
21
22
23
24

    @classmethod
    def from_storage(self, storage):
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
25
        self.storage = storage
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
        return self

    @classmethod
    def from_dense(self, mat):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()

        index = index.t().contiguous()
        value = mat[index[0], index[1]]
rusty1s's avatar
rusty1s committed
37
38
39
40
        return SparseTensor(index, value, mat.size()[:2], is_sorted=True)

    @classmethod
    def from_torch_sparse_coo_tensor(self, mat, is_sorted=False):
rusty1s's avatar
rusty1s committed
41
42
        return SparseTensor(mat._indices(), mat._values(),
                            mat.size()[:2], is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    @classmethod
    def from_scipy(self, mat):
        colptr = None
        if isinstance(mat, scipy.sparse.csc_matrix):
            colptr = torch.from_numpy(mat.indptr).to(torch.long)

        mat = mat.tocsr()
        rowptr = torch.from_numpy(mat.indptr).to(torch.long)
        mat = mat.tocoo()
        row = torch.from_numpy(mat.row).to(torch.long)
        col = torch.from_numpy(mat.col).to(torch.long)
        index = torch.stack([row, col], dim=0)
        value = torch.from_numpy(mat.data)
        size = mat.shape

rusty1s's avatar
rusty1s committed
59
60
        storage = SparseStorage(index, value, size, rowptr=rowptr,
                                colptr=colptr, is_sorted=True)
rusty1s's avatar
rusty1s committed
61
62

        return SparseTensor.from_storage(storage)
rusty1s's avatar
rusty1s committed
63

rusty1s's avatar
rusty1s committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    @classmethod
    def eye(self, m, n=None, device=None, no_value=True, fill_cache=False):
        n = m if n is None else n

        index = torch.empty((2, min(m, n)), dtype=torch.long, device=device)
        torch.arange(index.size(1), out=index[0])
        torch.arange(index.size(1), out=index[1])

        value = None
        if not no_value:
            value = torch.ones(index.size(1), device=device)

        rowcount = rowptr = colcount = colptr = csr2csc = csc2csr = None
        if fill_cache:
            rowcount = index.new_ones(m)
            rowptr = torch.arange(m + 1, device=device)
            colcount = index.new_ones(n)
            colptr = torch.arange(n + 1, device=device)
            csr2csc = torch.arange(index.size(1), device=device)
            csc2csr = torch.arange(index.size(1), device=device)

        storage = SparseStorage(
            index,
            value,
            torch.Size([m, n]),
            rowcount=rowcount,
            rowptr=rowptr,
            colcount=colcount,
            colptr=colptr,
            csr2csc=csr2csc,
            csc2csr=csc2csr,
            is_sorted=True,
        )
        return SparseTensor.from_storage(storage)

rusty1s's avatar
rusty1s committed
99
    def __copy__(self):
rusty1s's avatar
rusty1s committed
100
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
101
102

    def clone(self):
rusty1s's avatar
rusty1s committed
103
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
104
105
106
107
108
109
110
111
112

    def __deepcopy__(self, memo):
        new_sparse_tensor = self.clone()
        memo[id(self)] = new_sparse_tensor
        return new_sparse_tensor

    # Formats #################################################################

    def coo(self):
rusty1s's avatar
rusty1s committed
113
        return self.storage.index, self.storage.value
rusty1s's avatar
rusty1s committed
114
115

    def csr(self):
rusty1s's avatar
rusty1s committed
116
        return self.storage.rowptr, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
117
118

    def csc(self):
rusty1s's avatar
fixes  
rusty1s committed
119
        perm = self.storage.csr2csc  # Compute `csr2csc` first.
rusty1s's avatar
rusty1s committed
120
121
        return (self.storage.colptr, self.storage.row[perm],
                self.storage.value[perm] if self.has_value() else None)
rusty1s's avatar
rusty1s committed
122
123
124
125

    # Storage inheritance #####################################################

    def has_value(self):
rusty1s's avatar
rusty1s committed
126
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
127
128

    def set_value_(self, value, layout=None):
rusty1s's avatar
rusty1s committed
129
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
130
131
132
        return self

    def set_value(self, value, layout=None):
rusty1s's avatar
rusty1s committed
133
        return self.from_storage(self.storage.set_value(value, layout))
rusty1s's avatar
rusty1s committed
134
135

    def sparse_size(self, dim=None):
rusty1s's avatar
rusty1s committed
136
        return self.storage.sparse_size(dim)
rusty1s's avatar
rusty1s committed
137

rusty1s's avatar
rusty1s committed
138
139
    def sparse_resize(self, *sizes):
        return self.from_storage(self.storage.sparse_resize(*sizes))
rusty1s's avatar
rusty1s committed
140
141

    def is_coalesced(self):
rusty1s's avatar
rusty1s committed
142
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
143

rusty1s's avatar
rusty1s committed
144
145
    def coalesce(self, reduce='add'):
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
146
147

    def cached_keys(self):
rusty1s's avatar
rusty1s committed
148
        return self.storage.cached_keys()
rusty1s's avatar
rusty1s committed
149
150

    def fill_cache_(self, *args):
rusty1s's avatar
rusty1s committed
151
        self.storage.fill_cache_(*args)
rusty1s's avatar
rusty1s committed
152
153
154
        return self

    def clear_cache_(self, *args):
rusty1s's avatar
rusty1s committed
155
        self.storage.clear_cache_(*args)
rusty1s's avatar
rusty1s committed
156
157
158
159
160
161
        return self

    # Utility functions #######################################################

    def size(self, dim=None):
        size = self.sparse_size()
rusty1s's avatar
rusty1s committed
162
        size += self.storage.value.size()[1:] if self.has_value() else ()
rusty1s's avatar
rusty1s committed
163
164
165
166
167
168
169
170
171
172
        return size if dim is None else size[dim]

    def dim(self):
        return len(self.size())

    @property
    def shape(self):
        return self.size()

    def nnz(self):
rusty1s's avatar
rusty1s committed
173
        return self.storage.index.size(1)
rusty1s's avatar
rusty1s committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    def density(self):
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self):
        return 1 - self.density()

    def avg_row_length(self):
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self):
        return self.nnz() / self.sparse_size(1)

    def numel(self):
        return self.value.numel() if self.has_value() else self.nnz()

    def is_quadratic(self):
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self):
        if not self.is_quadratic:
            return False

        rowptr, col, val1 = self.csr()
        colptr, row, val2 = self.csc()
rusty1s's avatar
rusty1s committed
199
200
201
        index_sym = (rowptr == colptr).all() and (col == row).all()
        value_sym = (val1 == val2).all().item() if self.has_value() else True
        return index_sym.item() and value_sym
rusty1s's avatar
rusty1s committed
202
203

    def detach_(self):
rusty1s's avatar
rusty1s committed
204
        self.storage.apply_(lambda x: x.detach_())
rusty1s's avatar
rusty1s committed
205
206
207
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
208
        return self.from_storage(self.storage.apply(lambda x: x.detach()))
rusty1s's avatar
rusty1s committed
209
210

    def pin_memory(self):
rusty1s's avatar
rusty1s committed
211
        return self.from_storage(self.storage.apply(lambda x: x.pin_memory()))
rusty1s's avatar
rusty1s committed
212
213

    def is_pinned(self):
rusty1s's avatar
rusty1s committed
214
        return all(self.storage.map(lambda x: x.is_pinned()))
rusty1s's avatar
rusty1s committed
215
216

    def share_memory_(self):
rusty1s's avatar
rusty1s committed
217
        self.storage.apply_(lambda x: x.share_memory_())
rusty1s's avatar
rusty1s committed
218
219
220
        return self

    def is_shared(self):
rusty1s's avatar
rusty1s committed
221
        return all(self.storage.map(lambda x: x.is_shared()))
rusty1s's avatar
rusty1s committed
222
223
224

    @property
    def device(self):
rusty1s's avatar
rusty1s committed
225
        return self.storage.index.device
rusty1s's avatar
rusty1s committed
226
227

    def cpu(self):
rusty1s's avatar
rusty1s committed
228
        return self.from_storage(self.storage.apply(lambda x: x.cpu()))
rusty1s's avatar
rusty1s committed
229
230

    def cuda(self, device=None, non_blocking=False, **kwargs):
rusty1s's avatar
rusty1s committed
231
232
        storage = self.storage.apply(
            lambda x: x.cuda(device, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
233
        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
234
235
236

    @property
    def is_cuda(self):
rusty1s's avatar
rusty1s committed
237
        return self.storage.index.is_cuda
rusty1s's avatar
rusty1s committed
238
239
240

    @property
    def dtype(self):
rusty1s's avatar
rusty1s committed
241
        return self.storage.value.dtype if self.has_value() else None
rusty1s's avatar
rusty1s committed
242
243

    def is_floating_point(self):
rusty1s's avatar
rusty1s committed
244
        value = self.storage.value
rusty1s's avatar
rusty1s committed
245
246
247
248
249
250
251
252
253
        return self.has_value() and torch.is_floating_point(value)

    def type(self, dtype=None, non_blocking=False, **kwargs):
        if dtype is None:
            return self.dtype

        if dtype == self.dtype:
            return self

rusty1s's avatar
rusty1s committed
254
255
        storage = self.storage.apply_value(
            lambda x: x.type(dtype, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
256
257

        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
258
259
260
261
262
263
264

    def to(self, *args, **kwargs):
        storage = None

        if 'device' in kwargs:
            device = kwargs['device']
            del kwargs['device']
rusty1s's avatar
rusty1s committed
265
            storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
266
267
268
269
                device, non_blocking=getattr(kwargs, 'non_blocking', False)))

        for arg in args[:]:
            if isinstance(arg, str) or isinstance(arg, torch.device):
rusty1s's avatar
rusty1s committed
270
                storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
271
272
273
274
                    arg, non_blocking=getattr(kwargs, 'non_blocking', False)))
                args.remove(arg)

        if storage is not None:
rusty1s's avatar
rusty1s committed
275
            self = self.from_storage(storage)
rusty1s's avatar
rusty1s committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

        if len(args) > 0 or len(kwargs) > 0:
            self = self.type(*args, **kwargs)

        return self

    def bfloat16(self):
        return self.type(torch.bfloat16)

    def bool(self):
        return self.type(torch.bool)

    def byte(self):
        return self.type(torch.byte)

    def char(self):
        return self.type(torch.char)

    def half(self):
        return self.type(torch.half)

    def float(self):
        return self.type(torch.float)

    def double(self):
        return self.type(torch.double)

    def short(self):
        return self.type(torch.short)

    def int(self):
        return self.type(torch.int)

    def long(self):
        return self.type(torch.long)

    # Conversions #############################################################

    def to_dense(self, dtype=None):
        dtype = dtype or self.dtype
        (row, col), value = self.coo()
        mat = torch.zeros(self.size(), dtype=dtype, device=self.device)
        mat[row, col] = value if self.has_value() else 1
        return mat

    def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False):
        index, value = self.coo()
        return torch.sparse_coo_tensor(
rusty1s's avatar
rusty1s committed
324
325
326
            index, value if self.has_value() else torch.ones(
                self.nnz(), dtype=dtype, device=self.device), self.size(),
            device=self.device, requires_grad=requires_grad)
rusty1s's avatar
rusty1s committed
327
328

    def to_scipy(self, dtype=None, layout=None):
rusty1s's avatar
rusty1s committed
329
        assert self.dim() == 2
rusty1s's avatar
rusty1s committed
330
        layout = get_layout(layout)
rusty1s's avatar
rusty1s committed
331

rusty1s's avatar
rusty1s committed
332
333
        if not self.has_value():
            ones = torch.ones(self.nnz(), dtype=dtype).numpy()
rusty1s's avatar
rusty1s committed
334
335

        if layout == 'coo':
rusty1s's avatar
rusty1s committed
336
337
338
339
            (row, col), value = self.coo()
            row = row.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
340
341
            return scipy.sparse.coo_matrix((value, (row, col)), self.size())
        elif layout == 'csr':
rusty1s's avatar
rusty1s committed
342
343
344
345
            rowptr, col, value = self.csr()
            rowptr = rowptr.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
346
347
            return scipy.sparse.csr_matrix((value, col, rowptr), self.size())
        elif layout == 'csc':
rusty1s's avatar
rusty1s committed
348
349
350
351
            colptr, row, value = self.csc()
            colptr = colptr.detach().cpu().numpy()
            row = row.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
352
353
            return scipy.sparse.csc_matrix((value, row, colptr), self.size())

rusty1s's avatar
rusty1s committed
354
355
356
357
    # Standard Operators ######################################################

    def __getitem__(self, index):
        index = list(index) if isinstance(index, tuple) else [index]
rusty1s's avatar
typo  
rusty1s committed
358
        # More than one `Ellipsis` is not allowed...
rusty1s's avatar
rusty1s committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
            raise SyntaxError()

        dim = 0
        out = self
        while len(index) > 0:
            item = index.pop(0)
            if isinstance(item, int):
                out = out.select(dim, item)
                dim += 1
            elif isinstance(item, slice):
                if item.step is not None:
                    raise ValueError('Step parameter not yet supported.')

                start = 0 if item.start is None else item.start
                start = self.size(dim) + start if start < 0 else start

                stop = self.size(dim) if item.stop is None else item.stop
                stop = self.size(dim) + stop if stop < 0 else stop

                out = out.narrow(dim, start, max(stop - start, 0))
                dim += 1
            elif torch.is_tensor(item):
                if item.dtype == torch.bool:
                    out = out.masked_select(dim, item)
                    dim += 1
                elif item.dtype == torch.long:
                    out = out.index_select(dim, item)
                    dim += 1
            elif item == Ellipsis:
                if self.dim() - len(index) < dim:
                    raise SyntaxError()
                dim = self.dim() - len(index)
            else:
                raise SyntaxError()

        return out

rusty1s's avatar
rusty1s committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    # String Reputation #######################################################

    def __repr__(self):
        i = ' ' * 6
        index, value = self.coo()
        infos = [f'index={indent(index.__repr__(), i)[len(i):]}']

        if self.has_value():
            infos += [f'value={indent(value.__repr__(), i)[len(i):]}']

        infos += [
            f'size={tuple(self.size())}, '
            f'nnz={self.nnz()}, '
            f'density={100 * self.density():.02f}%'
        ]
        infos = ',\n'.join(infos)

        i = ' ' * (len(self.__class__.__name__) + 1)
        return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
419

rusty1s's avatar
rusty1s committed
420
SparseTensor.t = t
rusty1s's avatar
rusty1s committed
421
SparseTensor.narrow = narrow
rusty1s's avatar
rusty1s committed
422
423
424
425
426
SparseTensor.select = select
SparseTensor.index_select = index_select
SparseTensor.index_select_nnz = index_select_nnz
SparseTensor.masked_select = masked_select
SparseTensor.masked_select_nnz = masked_select_nnz
rusty1s's avatar
rusty1s committed
427
SparseTensor.reduction = torch_sparse.reduce.reduction
rusty1s's avatar
rusty1s committed
428
429
430
431
SparseTensor.sum = torch_sparse.reduce.sum
SparseTensor.mean = torch_sparse.reduce.mean
SparseTensor.min = torch_sparse.reduce.min
SparseTensor.max = torch_sparse.reduce.max
rusty1s's avatar
rusty1s committed
432
433
434
SparseTensor.remove_diag = remove_diag
# SparseTensor.add = add
# SparseTensor.add_nnz = add_nnz
rusty1s's avatar
rusty1s committed
435

rusty1s's avatar
typo  
rusty1s committed
436
437
438
# def remove_diag(self):
#     raise NotImplementedError

rusty1s's avatar
rusty1s committed
439
440
441
#     def set_diag(self, value):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#     def __reduce(self, dim, reduce, only_nnz):
#         raise NotImplementedError

#     def sum(self, dim):
#         return self.__reduce(dim, reduce='add', only_nnz=True)

#     def prod(self, dim):
#         return self.__reduce(dim, reduce='mul', only_nnz=True)

#     def min(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def max(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def mean(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='mean', only_nnz=only_nnz)

#     def matmul(self, mat, reduce='add'):
#         assert self.numel() == self.nnz()  # Disallow multi-dimensional value
#         if torch.is_tensor(mat):
#             raise NotImplementedError
#         elif isinstance(mat, self.__class__):
#             assert reduce == 'add'
rusty1s's avatar
rusty1s committed
466
#           assert mat.numel() == mat.nnz()  # Disallow multi-dimensional value
rusty1s's avatar
rusty1s committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#             raise NotImplementedError
#         raise ValueError('Argument needs to be of type `torch.tensor` or '
#                          'type `torch_sparse.SparseTensor`.')

#     def __add__(self, other):
#         return self.add(other)

#     def __radd__(self, other):
#         return self.add(other)

#     def sub(self, layout=None):
#         raise NotImplementedError

#     def sub_(self, layout=None):
#         raise NotImplementedError

#     def mul(self, layout=None):
#         raise NotImplementedError

#     def mul_(self, layout=None):
#         raise NotImplementedError

#     def div(self, layout=None):
#         raise NotImplementedError

#     def div_(self, layout=None):
#         raise NotImplementedError