tensor.py 16.3 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from textwrap import indent

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
6
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from torch_sparse.transpose import t
rusty1s's avatar
rusty1s committed
9
from torch_sparse.narrow import narrow
rusty1s's avatar
rusty1s committed
10
11
12
from torch_sparse.select import select
from torch_sparse.index_select import index_select, index_select_nnz
from torch_sparse.masked_select import masked_select, masked_select_nnz
rusty1s's avatar
rusty1s committed
13
import torch_sparse.reduce
rusty1s's avatar
rusty1s committed
14
from torch_sparse.diag import remove_diag
rusty1s's avatar
rusty1s committed
15
from torch_sparse.matmul import matmul
rusty1s's avatar
rusty1s committed
16
17
18
19


class SparseTensor(object):
    def __init__(self, index, value=None, sparse_size=None, is_sorted=False):
rusty1s's avatar
rusty1s committed
20
21
        self.storage = SparseStorage(index, value, sparse_size,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
22
23
24
25

    @classmethod
    def from_storage(self, storage):
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
26
        self.storage = storage
rusty1s's avatar
rusty1s committed
27
28
29
30
31
32
33
34
35
36
37
        return self

    @classmethod
    def from_dense(self, mat):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()

        index = index.t().contiguous()
        value = mat[index[0], index[1]]
rusty1s's avatar
rusty1s committed
38
39
40
41
        return SparseTensor(index, value, mat.size()[:2], is_sorted=True)

    @classmethod
    def from_torch_sparse_coo_tensor(self, mat, is_sorted=False):
rusty1s's avatar
rusty1s committed
42
43
        return SparseTensor(mat._indices(), mat._values(),
                            mat.size()[:2], is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

    @classmethod
    def from_scipy(self, mat):
        colptr = None
        if isinstance(mat, scipy.sparse.csc_matrix):
            colptr = torch.from_numpy(mat.indptr).to(torch.long)

        mat = mat.tocsr()
        rowptr = torch.from_numpy(mat.indptr).to(torch.long)
        mat = mat.tocoo()
        row = torch.from_numpy(mat.row).to(torch.long)
        col = torch.from_numpy(mat.col).to(torch.long)
        index = torch.stack([row, col], dim=0)
        value = torch.from_numpy(mat.data)
        size = mat.shape

rusty1s's avatar
rusty1s committed
60
61
        storage = SparseStorage(index, value, size, rowptr=rowptr,
                                colptr=colptr, is_sorted=True)
rusty1s's avatar
rusty1s committed
62
63

        return SparseTensor.from_storage(storage)
rusty1s's avatar
rusty1s committed
64

rusty1s's avatar
rusty1s committed
65
    @classmethod
rusty1s's avatar
rusty1s committed
66
67
68
    def eye(self, M, N=None, device=None, dtype=None, no_value=False,
            fill_cache=False):
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
69

rusty1s's avatar
rusty1s committed
70
        index = torch.empty((2, min(M, N)), dtype=torch.long, device=device)
rusty1s's avatar
rusty1s committed
71
72
73
74
75
        torch.arange(index.size(1), out=index[0])
        torch.arange(index.size(1), out=index[1])

        value = None
        if not no_value:
rusty1s's avatar
rusty1s committed
76
            value = torch.ones(index.size(1), dtype=dtype, device=device)
rusty1s's avatar
rusty1s committed
77
78
79

        rowcount = rowptr = colcount = colptr = csr2csc = csc2csr = None
        if fill_cache:
rusty1s's avatar
rusty1s committed
80
81
82
83
84
85
86
87
88
89
            rowcount = index.new_ones(M)
            rowptr = torch.arange(M + 1, device=device)
            if M > N:
                rowcount[index.size(1):] = 0
                rowptr[index.size(1) + 1:] = index.size(1)
            colcount = index.new_ones(N)
            colptr = torch.arange(N + 1, device=device)
            if N > M:
                colcount[index.size(1):] = 0
                colptr[index.size(1) + 1:] = index.size(1)
rusty1s's avatar
rusty1s committed
90
91
92
93
94
95
            csr2csc = torch.arange(index.size(1), device=device)
            csc2csr = torch.arange(index.size(1), device=device)

        storage = SparseStorage(
            index,
            value,
rusty1s's avatar
rusty1s committed
96
            torch.Size([M, N]),
rusty1s's avatar
rusty1s committed
97
98
99
100
101
102
103
104
105
106
            rowcount=rowcount,
            rowptr=rowptr,
            colcount=colcount,
            colptr=colptr,
            csr2csc=csr2csc,
            csc2csr=csc2csr,
            is_sorted=True,
        )
        return SparseTensor.from_storage(storage)

rusty1s's avatar
rusty1s committed
107
    def __copy__(self):
rusty1s's avatar
rusty1s committed
108
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
109
110

    def clone(self):
rusty1s's avatar
rusty1s committed
111
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
112
113
114
115
116
117
118
119
120

    def __deepcopy__(self, memo):
        new_sparse_tensor = self.clone()
        memo[id(self)] = new_sparse_tensor
        return new_sparse_tensor

    # Formats #################################################################

    def coo(self):
rusty1s's avatar
rusty1s committed
121
        return self.storage.index, self.storage.value
rusty1s's avatar
rusty1s committed
122
123

    def csr(self):
rusty1s's avatar
rusty1s committed
124
        return self.storage.rowptr, self.storage.col, self.storage.value
rusty1s's avatar
rusty1s committed
125
126

    def csc(self):
rusty1s's avatar
fixes  
rusty1s committed
127
        perm = self.storage.csr2csc  # Compute `csr2csc` first.
rusty1s's avatar
rusty1s committed
128
129
        return (self.storage.colptr, self.storage.row[perm],
                self.storage.value[perm] if self.has_value() else None)
rusty1s's avatar
rusty1s committed
130
131
132
133

    # Storage inheritance #####################################################

    def has_value(self):
rusty1s's avatar
rusty1s committed
134
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
135
136

    def set_value_(self, value, layout=None):
rusty1s's avatar
rusty1s committed
137
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
138
139
140
        return self

    def set_value(self, value, layout=None):
rusty1s's avatar
rusty1s committed
141
        return self.from_storage(self.storage.set_value(value, layout))
rusty1s's avatar
rusty1s committed
142
143

    def sparse_size(self, dim=None):
rusty1s's avatar
rusty1s committed
144
        return self.storage.sparse_size(dim)
rusty1s's avatar
rusty1s committed
145

rusty1s's avatar
rusty1s committed
146
147
    def sparse_resize(self, *sizes):
        return self.from_storage(self.storage.sparse_resize(*sizes))
rusty1s's avatar
rusty1s committed
148
149

    def is_coalesced(self):
rusty1s's avatar
rusty1s committed
150
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
151

rusty1s's avatar
rusty1s committed
152
153
    def coalesce(self, reduce='add'):
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
154
155

    def cached_keys(self):
rusty1s's avatar
rusty1s committed
156
        return self.storage.cached_keys()
rusty1s's avatar
rusty1s committed
157
158

    def fill_cache_(self, *args):
rusty1s's avatar
rusty1s committed
159
        self.storage.fill_cache_(*args)
rusty1s's avatar
rusty1s committed
160
161
162
        return self

    def clear_cache_(self, *args):
rusty1s's avatar
rusty1s committed
163
        self.storage.clear_cache_(*args)
rusty1s's avatar
rusty1s committed
164
165
166
167
168
169
        return self

    # Utility functions #######################################################

    def size(self, dim=None):
        size = self.sparse_size()
rusty1s's avatar
rusty1s committed
170
        size += self.storage.value.size()[1:] if self.has_value() else ()
rusty1s's avatar
rusty1s committed
171
172
173
174
175
176
177
178
179
180
        return size if dim is None else size[dim]

    def dim(self):
        return len(self.size())

    @property
    def shape(self):
        return self.size()

    def nnz(self):
rusty1s's avatar
rusty1s committed
181
        return self.storage.index.size(1)
rusty1s's avatar
rusty1s committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    def density(self):
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self):
        return 1 - self.density()

    def avg_row_length(self):
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self):
        return self.nnz() / self.sparse_size(1)

    def numel(self):
        return self.value.numel() if self.has_value() else self.nnz()

    def is_quadratic(self):
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self):
        if not self.is_quadratic:
            return False

        rowptr, col, val1 = self.csr()
        colptr, row, val2 = self.csc()
rusty1s's avatar
rusty1s committed
207
208
209
        index_sym = (rowptr == colptr).all() and (col == row).all()
        value_sym = (val1 == val2).all().item() if self.has_value() else True
        return index_sym.item() and value_sym
rusty1s's avatar
rusty1s committed
210
211

    def detach_(self):
rusty1s's avatar
rusty1s committed
212
        self.storage.apply_(lambda x: x.detach_())
rusty1s's avatar
rusty1s committed
213
214
215
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
216
        return self.from_storage(self.storage.apply(lambda x: x.detach()))
rusty1s's avatar
rusty1s committed
217

rusty1s's avatar
rusty1s committed
218
219
220
221
222
223
224
225
226
    @property
    def requires_grad(self):
        return self.storage.value.requires_grad if self.has_value() else False

    def requires_grad_(self, requires_grad=True):
        if self.has_value():
            self.storage.value.requires_grad_(requires_grad)
        return self

rusty1s's avatar
rusty1s committed
227
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
228
        return self.from_storage(self.storage.apply(lambda x: x.pin_memory()))
rusty1s's avatar
rusty1s committed
229
230

    def is_pinned(self):
rusty1s's avatar
rusty1s committed
231
        return all(self.storage.map(lambda x: x.is_pinned()))
rusty1s's avatar
rusty1s committed
232
233

    def share_memory_(self):
rusty1s's avatar
rusty1s committed
234
        self.storage.apply_(lambda x: x.share_memory_())
rusty1s's avatar
rusty1s committed
235
236
237
        return self

    def is_shared(self):
rusty1s's avatar
rusty1s committed
238
        return all(self.storage.map(lambda x: x.is_shared()))
rusty1s's avatar
rusty1s committed
239
240
241

    @property
    def device(self):
rusty1s's avatar
rusty1s committed
242
        return self.storage.index.device
rusty1s's avatar
rusty1s committed
243
244

    def cpu(self):
rusty1s's avatar
rusty1s committed
245
        return self.from_storage(self.storage.apply(lambda x: x.cpu()))
rusty1s's avatar
rusty1s committed
246
247

    def cuda(self, device=None, non_blocking=False, **kwargs):
rusty1s's avatar
rusty1s committed
248
249
        storage = self.storage.apply(
            lambda x: x.cuda(device, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
250
        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
251
252
253

    @property
    def is_cuda(self):
rusty1s's avatar
rusty1s committed
254
        return self.storage.index.is_cuda
rusty1s's avatar
rusty1s committed
255
256
257

    @property
    def dtype(self):
rusty1s's avatar
rusty1s committed
258
        return self.storage.value.dtype if self.has_value() else None
rusty1s's avatar
rusty1s committed
259
260

    def is_floating_point(self):
rusty1s's avatar
rusty1s committed
261
        value = self.storage.value
rusty1s's avatar
rusty1s committed
262
263
264
265
266
267
268
269
270
        return self.has_value() and torch.is_floating_point(value)

    def type(self, dtype=None, non_blocking=False, **kwargs):
        if dtype is None:
            return self.dtype

        if dtype == self.dtype:
            return self

rusty1s's avatar
rusty1s committed
271
272
        storage = self.storage.apply_value(
            lambda x: x.type(dtype, non_blocking, **kwargs))
rusty1s's avatar
rusty1s committed
273
274

        return self.from_storage(storage)
rusty1s's avatar
rusty1s committed
275
276
277
278
279
280
281

    def to(self, *args, **kwargs):
        storage = None

        if 'device' in kwargs:
            device = kwargs['device']
            del kwargs['device']
rusty1s's avatar
rusty1s committed
282
            storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
283
284
285
286
                device, non_blocking=getattr(kwargs, 'non_blocking', False)))

        for arg in args[:]:
            if isinstance(arg, str) or isinstance(arg, torch.device):
rusty1s's avatar
rusty1s committed
287
                storage = self.storage.apply(lambda x: x.to(
rusty1s's avatar
rusty1s committed
288
289
290
291
                    arg, non_blocking=getattr(kwargs, 'non_blocking', False)))
                args.remove(arg)

        if storage is not None:
rusty1s's avatar
rusty1s committed
292
            self = self.from_storage(storage)
rusty1s's avatar
rusty1s committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

        if len(args) > 0 or len(kwargs) > 0:
            self = self.type(*args, **kwargs)

        return self

    def bfloat16(self):
        return self.type(torch.bfloat16)

    def bool(self):
        return self.type(torch.bool)

    def byte(self):
        return self.type(torch.byte)

    def char(self):
        return self.type(torch.char)

    def half(self):
        return self.type(torch.half)

    def float(self):
        return self.type(torch.float)

    def double(self):
        return self.type(torch.double)

    def short(self):
        return self.type(torch.short)

    def int(self):
        return self.type(torch.int)

    def long(self):
        return self.type(torch.long)

    # Conversions #############################################################

    def to_dense(self, dtype=None):
        dtype = dtype or self.dtype
        (row, col), value = self.coo()
        mat = torch.zeros(self.size(), dtype=dtype, device=self.device)
        mat[row, col] = value if self.has_value() else 1
        return mat

    def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False):
        index, value = self.coo()
        return torch.sparse_coo_tensor(
rusty1s's avatar
rusty1s committed
341
342
343
            index, value if self.has_value() else torch.ones(
                self.nnz(), dtype=dtype, device=self.device), self.size(),
            device=self.device, requires_grad=requires_grad)
rusty1s's avatar
rusty1s committed
344
345

    def to_scipy(self, dtype=None, layout=None):
rusty1s's avatar
rusty1s committed
346
        assert self.dim() == 2
rusty1s's avatar
rusty1s committed
347
        layout = get_layout(layout)
rusty1s's avatar
rusty1s committed
348

rusty1s's avatar
rusty1s committed
349
350
        if not self.has_value():
            ones = torch.ones(self.nnz(), dtype=dtype).numpy()
rusty1s's avatar
rusty1s committed
351
352

        if layout == 'coo':
rusty1s's avatar
rusty1s committed
353
354
355
356
            (row, col), value = self.coo()
            row = row.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
357
358
            return scipy.sparse.coo_matrix((value, (row, col)), self.size())
        elif layout == 'csr':
rusty1s's avatar
rusty1s committed
359
360
361
362
            rowptr, col, value = self.csr()
            rowptr = rowptr.detach().cpu().numpy()
            col = col.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
363
364
            return scipy.sparse.csr_matrix((value, col, rowptr), self.size())
        elif layout == 'csc':
rusty1s's avatar
rusty1s committed
365
366
367
368
            colptr, row, value = self.csc()
            colptr = colptr.detach().cpu().numpy()
            row = row.detach().cpu().numpy()
            value = value.detach().cpu().numpy() if self.has_value() else ones
rusty1s's avatar
rusty1s committed
369
370
            return scipy.sparse.csc_matrix((value, row, colptr), self.size())

rusty1s's avatar
rusty1s committed
371
372
373
374
    # Standard Operators ######################################################

    def __getitem__(self, index):
        index = list(index) if isinstance(index, tuple) else [index]
rusty1s's avatar
typo  
rusty1s committed
375
        # More than one `Ellipsis` is not allowed...
rusty1s's avatar
rusty1s committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
            raise SyntaxError()

        dim = 0
        out = self
        while len(index) > 0:
            item = index.pop(0)
            if isinstance(item, int):
                out = out.select(dim, item)
                dim += 1
            elif isinstance(item, slice):
                if item.step is not None:
                    raise ValueError('Step parameter not yet supported.')

                start = 0 if item.start is None else item.start
                start = self.size(dim) + start if start < 0 else start

                stop = self.size(dim) if item.stop is None else item.stop
                stop = self.size(dim) + stop if stop < 0 else stop

                out = out.narrow(dim, start, max(stop - start, 0))
                dim += 1
            elif torch.is_tensor(item):
                if item.dtype == torch.bool:
                    out = out.masked_select(dim, item)
                    dim += 1
                elif item.dtype == torch.long:
                    out = out.index_select(dim, item)
                    dim += 1
            elif item == Ellipsis:
                if self.dim() - len(index) < dim:
                    raise SyntaxError()
                dim = self.dim() - len(index)
            else:
                raise SyntaxError()

        return out

rusty1s's avatar
rusty1s committed
414
415
416
    def __matmul__(a, b):
        return matmul(a, b, reduce='sum')

rusty1s's avatar
rusty1s committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    # String Reputation #######################################################

    def __repr__(self):
        i = ' ' * 6
        index, value = self.coo()
        infos = [f'index={indent(index.__repr__(), i)[len(i):]}']

        if self.has_value():
            infos += [f'value={indent(value.__repr__(), i)[len(i):]}']

        infos += [
            f'size={tuple(self.size())}, '
            f'nnz={self.nnz()}, '
            f'density={100 * self.density():.02f}%'
        ]
        infos = ',\n'.join(infos)

        i = ' ' * (len(self.__class__.__name__) + 1)
        return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
439

rusty1s's avatar
rusty1s committed
440
SparseTensor.t = t
rusty1s's avatar
rusty1s committed
441
SparseTensor.narrow = narrow
rusty1s's avatar
rusty1s committed
442
443
444
445
446
SparseTensor.select = select
SparseTensor.index_select = index_select
SparseTensor.index_select_nnz = index_select_nnz
SparseTensor.masked_select = masked_select
SparseTensor.masked_select_nnz = masked_select_nnz
rusty1s's avatar
rusty1s committed
447
SparseTensor.reduction = torch_sparse.reduce.reduction
rusty1s's avatar
rusty1s committed
448
449
450
451
SparseTensor.sum = torch_sparse.reduce.sum
SparseTensor.mean = torch_sparse.reduce.mean
SparseTensor.min = torch_sparse.reduce.min
SparseTensor.max = torch_sparse.reduce.max
rusty1s's avatar
rusty1s committed
452
SparseTensor.remove_diag = remove_diag
rusty1s's avatar
rusty1s committed
453
SparseTensor.matmul = matmul
rusty1s's avatar
rusty1s committed
454
455
# SparseTensor.add = add
# SparseTensor.add_nnz = add_nnz
rusty1s's avatar
rusty1s committed
456

rusty1s's avatar
typo  
rusty1s committed
457
458
459
# def remove_diag(self):
#     raise NotImplementedError

rusty1s's avatar
rusty1s committed
460
461
462
#     def set_diag(self, value):
#         raise NotImplementedError

rusty1s's avatar
rusty1s committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#     def __reduce(self, dim, reduce, only_nnz):
#         raise NotImplementedError

#     def sum(self, dim):
#         return self.__reduce(dim, reduce='add', only_nnz=True)

#     def prod(self, dim):
#         return self.__reduce(dim, reduce='mul', only_nnz=True)

#     def min(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def max(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='min', only_nnz=only_nnz)

#     def mean(self, dim, only_nnz=False):
#         return self.__reduce(dim, reduce='mean', only_nnz=only_nnz)

#     def matmul(self, mat, reduce='add'):
#         assert self.numel() == self.nnz()  # Disallow multi-dimensional value
#         if torch.is_tensor(mat):
#             raise NotImplementedError
#         elif isinstance(mat, self.__class__):
#             assert reduce == 'add'
rusty1s's avatar
rusty1s committed
487
#           assert mat.numel() == mat.nnz()  # Disallow multi-dimensional value
rusty1s's avatar
rusty1s committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#             raise NotImplementedError
#         raise ValueError('Argument needs to be of type `torch.tensor` or '
#                          'type `torch_sparse.SparseTensor`.')

#     def __add__(self, other):
#         return self.add(other)

#     def __radd__(self, other):
#         return self.add(other)

#     def sub(self, layout=None):
#         raise NotImplementedError

#     def sub_(self, layout=None):
#         raise NotImplementedError

#     def mul(self, layout=None):
#         raise NotImplementedError

#     def mul_(self, layout=None):
#         raise NotImplementedError

#     def div(self, layout=None):
#         raise NotImplementedError

#     def div_(self, layout=None):
#         raise NotImplementedError