tensor.py 19.9 KB
Newer Older
rusty1s's avatar
repr  
rusty1s committed
1
from textwrap import indent
rusty1s's avatar
typing  
rusty1s committed
2
from typing import Optional, List, Tuple, Dict, Union, Any
rusty1s's avatar
rusty1s committed
3
4
5
6

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
7
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
8
9


rusty1s's avatar
rusty1s committed
10
@torch.jit.script
rusty1s's avatar
rusty1s committed
11
class SparseTensor(object):
rusty1s's avatar
rusty1s committed
12
13
    storage: SparseStorage

rusty1s's avatar
rusty1s committed
14
    def __init__(self, row: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
15
16
17
                 rowptr: Optional[torch.Tensor] = None,
                 col: Optional[torch.Tensor] = None,
                 value: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
18
19
                 sparse_sizes: Optional[Tuple[int, int]] = None,
                 is_sorted: bool = False):
rusty1s's avatar
rusty1s committed
20
21
22
23
24
        self.storage = SparseStorage(row=row, rowptr=rowptr, col=col,
                                     value=value, sparse_sizes=sparse_sizes,
                                     rowcount=None, colptr=None, colcount=None,
                                     csr2csc=None, csc2csr=None,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
25
26

    @classmethod
rusty1s's avatar
rusty1s committed
27
    def from_storage(self, storage: SparseStorage):
rusty1s's avatar
rusty1s committed
28
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
29
        self.storage = storage
rusty1s's avatar
rusty1s committed
30
31
        return self

rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
38
39
40
    @classmethod
    def from_edge_index(self, edge_index: torch.Tensor,
                        edge_attr: Optional[torch.Tensor] = None,
                        sparse_sizes: Optional[Tuple[int, int]] = None,
                        is_sorted: bool = False):
        return SparseTensor(row=edge_index[0], rowptr=None, col=edge_index[1],
                            value=edge_attr, sparse_sizes=sparse_sizes,
                            is_sorted=is_sorted)

rusty1s's avatar
rusty1s committed
41
    @classmethod
rusty1s's avatar
rusty1s committed
42
    def from_dense(self, mat: torch.Tensor, has_value: bool = True):
rusty1s's avatar
rusty1s committed
43
44
45
46
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()
rusty1s's avatar
rusty1s committed
47
        index = index.t()
rusty1s's avatar
rusty1s committed
48

rusty1s's avatar
rusty1s committed
49
50
51
52
53
54
55
        row = index[0]
        col = index[1]

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat[row, col]

rusty1s's avatar
rusty1s committed
56
57
58
        return SparseTensor(row=row, rowptr=None, col=col, value=value,
                            sparse_sizes=(mat.size(0), mat.size(1)),
                            is_sorted=True)
rusty1s's avatar
rusty1s committed
59
60

    @classmethod
rusty1s's avatar
rusty1s committed
61
    def from_torch_sparse_coo_tensor(self, mat: torch.Tensor,
rusty1s's avatar
rusty1s committed
62
                                     has_value: bool = True):
rusty1s's avatar
rusty1s committed
63
64
65
        mat = mat.coalesce()
        index = mat._indices()
        row, col = index[0], index[1]
rusty1s's avatar
rusty1s committed
66
67
68
69
70

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat._values()

rusty1s's avatar
rusty1s committed
71
72
73
        return SparseTensor(row=row, rowptr=None, col=col, value=value,
                            sparse_sizes=(mat.size(0), mat.size(1)),
                            is_sorted=True)
rusty1s's avatar
rusty1s committed
74
75

    @classmethod
rusty1s's avatar
rusty1s committed
76
77
    def eye(self, M: int, N: Optional[int] = None,
            options: Optional[torch.Tensor] = None, has_value: bool = True,
rusty1s's avatar
rusty1s committed
78
            fill_cache: bool = False):
rusty1s's avatar
rusty1s committed
79

rusty1s's avatar
rusty1s committed
80
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
81

rusty1s's avatar
rusty1s committed
82
83
84
85
        if options is not None:
            row = torch.arange(min(M, N), device=options.device)
        else:
            row = torch.arange(min(M, N))
rusty1s's avatar
rusty1s committed
86
        col = row
rusty1s's avatar
rusty1s committed
87

rusty1s's avatar
rusty1s committed
88
89
        rowptr = torch.arange(M + 1, dtype=torch.long, device=row.device)
        if M > N:
rusty1s's avatar
rusty1s committed
90
            rowptr[N + 1:] = N
rusty1s's avatar
rusty1s committed
91
92

        value: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
93
        if has_value:
rusty1s's avatar
rusty1s committed
94
            if options is not None:
rusty1s's avatar
rusty1s committed
95
96
                value = torch.ones(row.numel(), dtype=options.dtype,
                                   device=row.device)
rusty1s's avatar
rusty1s committed
97
98
99
100
101
102
103
104
            else:
                value = torch.ones(row.numel(), device=row.device)

        rowcount: Optional[torch.Tensor] = None
        colptr: Optional[torch.Tensor] = None
        colcount: Optional[torch.Tensor] = None
        csr2csc: Optional[torch.Tensor] = None
        csc2csr: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
105
106

        if fill_cache:
rusty1s's avatar
rusty1s committed
107
            rowcount = torch.ones(M, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
108
            if M > N:
rusty1s's avatar
rusty1s committed
109
110
111
112
                rowcount[N:] = 0

            colptr = torch.arange(N + 1, dtype=torch.long, device=row.device)
            colcount = torch.ones(N, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
113
            if N > M:
rusty1s's avatar
rusty1s committed
114
115
                colptr[M + 1:] = M
                colcount[M:] = 0
rusty1s's avatar
rusty1s committed
116
117
            csr2csc = csc2csr = row

rusty1s's avatar
rusty1s committed
118
        storage: SparseStorage = SparseStorage(
rusty1s's avatar
rusty1s committed
119
120
121
            row=row, rowptr=rowptr, col=col, value=value, sparse_sizes=(M, N),
            rowcount=rowcount, colptr=colptr, colcount=colcount,
            csr2csc=csr2csc, csc2csr=csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
122

rusty1s's avatar
rusty1s committed
123
124
125
126
127
        self = SparseTensor.__new__(SparseTensor)
        self.storage = storage
        return self

    def copy(self):
rusty1s's avatar
rusty1s committed
128
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
129
130

    def clone(self):
rusty1s's avatar
rusty1s committed
131
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
132

rusty1s's avatar
rusty1s committed
133
134
135
136
137
138
139
140
141
142
    def type_as(self, tensor=torch.Tensor):
        value = self.storage._value
        if value is None or tensor.dtype == value.dtype:
            return self
        return self.from_storage(self.storage.type_as(tensor))

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        if tensor.device == self.device():
            return self
        return self.from_storage(self.storage.device_as(tensor, non_blocking))
rusty1s's avatar
rusty1s committed
143
144
145

    # Formats #################################################################

rusty1s's avatar
rusty1s committed
146
147
    def coo(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.row(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
148

rusty1s's avatar
rusty1s committed
149
150
    def csr(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.rowptr(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
151

rusty1s's avatar
rusty1s committed
152
153
154
155
156
157
    def csc(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        perm = self.storage.csr2csc()
        value = self.storage.value()
        if value is not None:
            value = value[perm]
        return self.storage.colptr(), self.storage.row()[perm], value
rusty1s's avatar
rusty1s committed
158
159
160

    # Storage inheritance #####################################################

rusty1s's avatar
rusty1s committed
161
    def has_value(self) -> bool:
rusty1s's avatar
rusty1s committed
162
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
163

rusty1s's avatar
rusty1s committed
164
    def set_value_(self, value: Optional[torch.Tensor],
rusty1s's avatar
rusty1s committed
165
166
                   layout: Optional[str] = None):
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
167
168
        return self

rusty1s's avatar
rusty1s committed
169
    def set_value(self, value: Optional[torch.Tensor],
rusty1s's avatar
rusty1s committed
170
171
172
                  layout: Optional[str] = None):
        return self.from_storage(self.storage.set_value(value, layout))

rusty1s's avatar
rusty1s committed
173
    def sparse_sizes(self) -> Tuple[int, int]:
rusty1s's avatar
rusty1s committed
174
        return self.storage.sparse_sizes()
rusty1s's avatar
rusty1s committed
175

rusty1s's avatar
rusty1s committed
176
177
    def sparse_size(self, dim: int) -> int:
        return self.storage.sparse_sizes()[dim]
rusty1s's avatar
rusty1s committed
178

rusty1s's avatar
rusty1s committed
179
    def sparse_resize(self, sparse_sizes: Tuple[int, int]):
rusty1s's avatar
rusty1s committed
180
        return self.from_storage(self.storage.sparse_resize(sparse_sizes))
rusty1s's avatar
rusty1s committed
181

rusty1s's avatar
rusty1s committed
182
183
184
185
    def sparse_reshape(self, num_rows: int, num_cols: int):
        return self.from_storage(
            self.storage.sparse_reshape(num_rows, num_cols))

rusty1s's avatar
rusty1s committed
186
    def is_coalesced(self) -> bool:
rusty1s's avatar
rusty1s committed
187
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
188

rusty1s's avatar
rusty1s committed
189
    def coalesce(self, reduce: str = "sum"):
rusty1s's avatar
rusty1s committed
190
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
191

rusty1s's avatar
rusty1s committed
192
193
    def fill_cache_(self):
        self.storage.fill_cache_()
rusty1s's avatar
rusty1s committed
194
195
        return self

rusty1s's avatar
rusty1s committed
196
197
    def clear_cache_(self):
        self.storage.clear_cache_()
rusty1s's avatar
rusty1s committed
198
199
200
201
        return self

    # Utility functions #######################################################

rusty1s's avatar
rusty1s committed
202
    def fill_value_(self, fill_value: float,
rusty1s's avatar
rusty1s committed
203
204
                    options: Optional[torch.Tensor] = None):
        if options is not None:
rusty1s's avatar
rusty1s committed
205
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
rusty1s's avatar
rusty1s committed
206
207
                               device=self.device())
        else:
rusty1s's avatar
rusty1s committed
208
            value = torch.full((self.nnz(), ), fill_value,
rusty1s's avatar
rusty1s committed
209
210
211
                               device=self.device())
        return self.set_value_(value, layout='coo')

rusty1s's avatar
rusty1s committed
212
    def fill_value(self, fill_value: float,
rusty1s's avatar
rusty1s committed
213
214
                   options: Optional[torch.Tensor] = None):
        if options is not None:
rusty1s's avatar
rusty1s committed
215
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
rusty1s's avatar
rusty1s committed
216
217
                               device=self.device())
        else:
rusty1s's avatar
rusty1s committed
218
            value = torch.full((self.nnz(), ), fill_value,
rusty1s's avatar
rusty1s committed
219
220
221
222
                               device=self.device())
        return self.set_value(value, layout='coo')

    def sizes(self) -> List[int]:
rusty1s's avatar
rusty1s committed
223
        sparse_sizes = self.sparse_sizes()
rusty1s's avatar
rusty1s committed
224
225
        value = self.storage.value()
        if value is not None:
rusty1s's avatar
rusty1s committed
226
227
228
            return list(sparse_sizes) + list(value.size())[1:]
        else:
            return list(sparse_sizes)
rusty1s's avatar
rusty1s committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    def size(self, dim: int) -> int:
        return self.sizes()[dim]

    def dim(self) -> int:
        return len(self.sizes())

    def nnz(self) -> int:
        return self.storage.col().numel()

    def numel(self) -> int:
        value = self.storage.value()
        if value is not None:
            return value.numel()
        else:
            return self.nnz()
rusty1s's avatar
rusty1s committed
245

rusty1s's avatar
rusty1s committed
246
    def density(self) -> float:
rusty1s's avatar
rusty1s committed
247
248
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

rusty1s's avatar
rusty1s committed
249
    def sparsity(self) -> float:
rusty1s's avatar
rusty1s committed
250
251
        return 1 - self.density()

rusty1s's avatar
rusty1s committed
252
    def avg_row_length(self) -> float:
rusty1s's avatar
rusty1s committed
253
254
        return self.nnz() / self.sparse_size(0)

rusty1s's avatar
rusty1s committed
255
    def avg_col_length(self) -> float:
rusty1s's avatar
rusty1s committed
256
257
        return self.nnz() / self.sparse_size(1)

rusty1s's avatar
rusty1s committed
258
259
260
261
    def bandwidth(self) -> int:
        row, col, _ = self.coo()
        return int((row - col).abs_().max())

rusty1s's avatar
rusty1s committed
262
263
264
265
    def avg_bandwidth(self) -> float:
        row, col, _ = self.coo()
        return float((row - col).abs_().to(torch.float).mean())

rusty1s's avatar
rusty1s committed
266
267
268
269
270
    def bandwidth_proportion(self, bandwidth: int) -> float:
        row, col, _ = self.coo()
        tmp = (row - col).abs_()
        return int((tmp <= bandwidth).sum()) / self.nnz()

rusty1s's avatar
rusty1s committed
271
    def is_quadratic(self) -> bool:
rusty1s's avatar
rusty1s committed
272
273
        return self.sparse_size(0) == self.sparse_size(1)

rusty1s's avatar
rusty1s committed
274
275
    def is_symmetric(self) -> bool:
        if not self.is_quadratic():
rusty1s's avatar
rusty1s committed
276
277
            return False

rusty1s's avatar
rusty1s committed
278
279
280
281
282
283
        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

rusty1s's avatar
rusty1s committed
284
        if value1 is None or value2 is None:
rusty1s's avatar
rusty1s committed
285
            return True
rusty1s's avatar
rusty1s committed
286
287
        else:
            return bool((value1 == value2).all())
rusty1s's avatar
rusty1s committed
288

rusty1s's avatar
rusty1s committed
289
290
291
292
293
294
295
296
297
    def to_symmetric(self, reduce: str = "sum"):
        row, col, value = self.coo()

        row, col = torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)
        if value is not None:
            value = torch.cat([value, value], dim=0)

        N = max(self.size(0), self.size(1))

rusty1s's avatar
rusty1s committed
298
299
        out = SparseTensor(row=row, rowptr=None, col=col, value=value,
                           sparse_sizes=(N, N), is_sorted=False)
rusty1s's avatar
rusty1s committed
300
301
302
        out = out.coalesce(reduce)
        return out

rusty1s's avatar
rusty1s committed
303
    def detach_(self):
rusty1s's avatar
rusty1s committed
304
305
306
        value = self.storage.value()
        if value is not None:
            value.detach_()
rusty1s's avatar
rusty1s committed
307
308
309
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
310
311
312
313
314
315
316
317
318
319
320
        value = self.storage.value()
        if value is not None:
            value = value.detach()
        return self.set_value(value, layout='coo')

    def requires_grad(self) -> bool:
        value = self.storage.value()
        if value is not None:
            return value.requires_grad
        else:
            return False
rusty1s's avatar
rusty1s committed
321

rusty1s's avatar
rusty1s committed
322
    def requires_grad_(self, requires_grad: bool = True,
rusty1s's avatar
rusty1s committed
323
                       options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
324
        if requires_grad and not self.has_value():
rusty1s's avatar
rusty1s committed
325
            self.fill_value_(1., options=options)
rusty1s's avatar
rusty1s committed
326

rusty1s's avatar
rusty1s committed
327
328
329
        value = self.storage.value()
        if value is not None:
            value.requires_grad_(requires_grad)
rusty1s's avatar
rusty1s committed
330
331
        return self

rusty1s's avatar
rusty1s committed
332
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
333
        return self.from_storage(self.storage.pin_memory())
rusty1s's avatar
rusty1s committed
334

rusty1s's avatar
rusty1s committed
335
336
    def is_pinned(self) -> bool:
        return self.storage.is_pinned()
rusty1s's avatar
rusty1s committed
337

rusty1s's avatar
rusty1s committed
338
339
340
341
342
    def options(self) -> torch.Tensor:
        value = self.storage.value()
        if value is not None:
            return value
        else:
rusty1s's avatar
rusty1s committed
343
344
            return torch.tensor(0., dtype=torch.float,
                                device=self.storage.col().device)
rusty1s's avatar
rusty1s committed
345
346

    def device(self):
rusty1s's avatar
rusty1s committed
347
        return self.storage.col().device
rusty1s's avatar
rusty1s committed
348
349

    def cpu(self):
rusty1s's avatar
rusty1s committed
350
        return self.device_as(torch.tensor(0.), non_blocking=False)
rusty1s's avatar
rusty1s committed
351

rusty1s's avatar
rusty1s committed
352
    def cuda(self, options: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
353
             non_blocking: bool = False):
rusty1s's avatar
rusty1s committed
354
355
        if options is not None:
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
356
        else:
rusty1s's avatar
rusty1s committed
357
358
            options = torch.tensor(0.).cuda()
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
359

rusty1s's avatar
rusty1s committed
360
361
    def is_cuda(self) -> bool:
        return self.storage.col().is_cuda
rusty1s's avatar
rusty1s committed
362

rusty1s's avatar
rusty1s committed
363
364
    def dtype(self):
        return self.options().dtype
rusty1s's avatar
rusty1s committed
365

rusty1s's avatar
rusty1s committed
366
367
    def is_floating_point(self) -> bool:
        return torch.is_floating_point(self.options())
rusty1s's avatar
rusty1s committed
368
369

    def bfloat16(self):
rusty1s's avatar
rusty1s committed
370
371
        return self.type_as(
            torch.tensor(0, dtype=torch.bfloat16, device=self.device()))
rusty1s's avatar
rusty1s committed
372
373

    def bool(self):
rusty1s's avatar
rusty1s committed
374
375
        return self.type_as(
            torch.tensor(0, dtype=torch.bool, device=self.device()))
rusty1s's avatar
rusty1s committed
376
377

    def byte(self):
rusty1s's avatar
rusty1s committed
378
379
        return self.type_as(
            torch.tensor(0, dtype=torch.uint8, device=self.device()))
rusty1s's avatar
rusty1s committed
380
381

    def char(self):
rusty1s's avatar
rusty1s committed
382
383
        return self.type_as(
            torch.tensor(0, dtype=torch.int8, device=self.device()))
rusty1s's avatar
rusty1s committed
384
385

    def half(self):
rusty1s's avatar
rusty1s committed
386
387
        return self.type_as(
            torch.tensor(0, dtype=torch.half, device=self.device()))
rusty1s's avatar
rusty1s committed
388
389

    def float(self):
rusty1s's avatar
rusty1s committed
390
391
        return self.type_as(
            torch.tensor(0, dtype=torch.float, device=self.device()))
rusty1s's avatar
rusty1s committed
392
393

    def double(self):
rusty1s's avatar
rusty1s committed
394
395
        return self.type_as(
            torch.tensor(0, dtype=torch.double, device=self.device()))
rusty1s's avatar
rusty1s committed
396
397

    def short(self):
rusty1s's avatar
rusty1s committed
398
399
        return self.type_as(
            torch.tensor(0, dtype=torch.short, device=self.device()))
rusty1s's avatar
rusty1s committed
400
401

    def int(self):
rusty1s's avatar
rusty1s committed
402
403
        return self.type_as(
            torch.tensor(0, dtype=torch.int, device=self.device()))
rusty1s's avatar
rusty1s committed
404
405

    def long(self):
rusty1s's avatar
rusty1s committed
406
407
        return self.type_as(
            torch.tensor(0, dtype=torch.long, device=self.device()))
rusty1s's avatar
rusty1s committed
408
409
410

    # Conversions #############################################################

rusty1s's avatar
fixes  
rusty1s committed
411
    def to_dense(self, options: Optional[torch.Tensor] = None) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
412
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
413

rusty1s's avatar
fixes  
rusty1s committed
414
        if value is not None:
rusty1s's avatar
rusty1s committed
415
416
            mat = torch.zeros(self.sizes(), dtype=value.dtype,
                              device=self.device())
rusty1s's avatar
fixes  
rusty1s committed
417
        elif options is not None:
rusty1s's avatar
rusty1s committed
418
419
            mat = torch.zeros(self.sizes(), dtype=options.dtype,
                              device=self.device())
rusty1s's avatar
rusty1s committed
420
421
422
423
424
425
        else:
            mat = torch.zeros(self.sizes(), device=self.device())

        if value is not None:
            mat[row, col] = value
        else:
rusty1s's avatar
rusty1s committed
426
427
            mat[row, col] = torch.ones(self.nnz(), dtype=mat.dtype,
                                       device=mat.device)
rusty1s's avatar
rusty1s committed
428

rusty1s's avatar
rusty1s committed
429
430
        return mat

rusty1s's avatar
rusty1s committed
431
432
    def to_torch_sparse_coo_tensor(self,
                                   options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
433
434
435
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)
        if value is None:
rusty1s's avatar
rusty1s committed
436
            if options is not None:
rusty1s's avatar
rusty1s committed
437
438
                value = torch.ones(self.nnz(), dtype=options.dtype,
                                   device=self.device())
rusty1s's avatar
rusty1s committed
439
            else:
rusty1s's avatar
rusty1s committed
440
                value = torch.ones(self.nnz(), device=self.device())
rusty1s's avatar
rusty1s committed
441

rusty1s's avatar
rusty1s committed
442
        return torch.sparse_coo_tensor(index, value, self.sizes())
rusty1s's avatar
rusty1s committed
443

rusty1s's avatar
rusty1s committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

# Python Bindings #############################################################

Dtype = Optional[torch.dtype]
Device = Optional[Union[torch.device, str]]


def share_memory_(self: SparseTensor) -> SparseTensor:
    self.storage.share_memory_()


def is_shared(self: SparseTensor) -> bool:
    return self.storage.is_shared()


rusty1s's avatar
typing  
rusty1s committed
459
460
461
def to(self, *args: Optional[List[Any]],
       **kwargs: Optional[Dict[str, Any]]) -> SparseTensor:

rusty1s's avatar
rusty1s committed
462
    device, dtype, non_blocking = torch._C._nn._parse_to(*args, **kwargs)[:3]
rusty1s's avatar
rusty1s committed
463
464
465
466
467
468
469
470
471

    if dtype is not None:
        self = self.type_as(torch.tensor(0., dtype=dtype))
    if device is not None:
        self = self.device_as(torch.tensor(0., device=device), non_blocking)

    return self


rusty1s's avatar
typing  
rusty1s committed
472
def __getitem__(self: SparseTensor, index: Any) -> SparseTensor:
rusty1s's avatar
repr  
rusty1s committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    index = list(index) if isinstance(index, tuple) else [index]
    # More than one `Ellipsis` is not allowed...
    if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
        raise SyntaxError

    dim = 0
    out = self
    while len(index) > 0:
        item = index.pop(0)
        if isinstance(item, int):
            out = out.select(dim, item)
            dim += 1
        elif isinstance(item, slice):
            if item.step is not None:
                raise ValueError('Step parameter not yet supported.')

            start = 0 if item.start is None else item.start
            start = self.size(dim) + start if start < 0 else start

            stop = self.size(dim) if item.stop is None else item.stop
            stop = self.size(dim) + stop if stop < 0 else stop

            out = out.narrow(dim, start, max(stop - start, 0))
            dim += 1
        elif torch.is_tensor(item):
            if item.dtype == torch.bool:
                out = out.masked_select(dim, item)
                dim += 1
            elif item.dtype == torch.long:
                out = out.index_select(dim, item)
                dim += 1
        elif item == Ellipsis:
            if self.dim() - len(index) < dim:
                raise SyntaxError
            dim = self.dim() - len(index)
        else:
            raise SyntaxError

    return out


rusty1s's avatar
typing  
rusty1s committed
514
def __repr__(self: SparseTensor) -> str:
rusty1s's avatar
repr  
rusty1s committed
515
516
517
    i = ' ' * 6
    row, col, value = self.coo()
    infos = []
rusty1s's avatar
rusty1s committed
518
519
    infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
    infos += [f'col={indent(col.__repr__(), i)[len(i):]}']
rusty1s's avatar
repr  
rusty1s committed
520
521

    if value is not None:
rusty1s's avatar
rusty1s committed
522
        infos += [f'val={indent(value.__repr__(), i)[len(i):]}']
rusty1s's avatar
repr  
rusty1s committed
523
524

    infos += [
rusty1s's avatar
rusty1s committed
525
526
        f'size={tuple(self.sizes())}, nnz={self.nnz()}, '
        f'density={100 * self.density():.02f}%'
rusty1s's avatar
repr  
rusty1s committed
527
    ]
rusty1s's avatar
rusty1s committed
528

rusty1s's avatar
repr  
rusty1s committed
529
530
531
    infos = ',\n'.join(infos)

    i = ' ' * (len(self.__class__.__name__) + 1)
rusty1s's avatar
rusty1s committed
532
    return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'
rusty1s's avatar
repr  
rusty1s committed
533
534


rusty1s's avatar
rusty1s committed
535
536
537
SparseTensor.share_memory_ = share_memory_
SparseTensor.is_shared = is_shared
SparseTensor.to = to
rusty1s's avatar
repr  
rusty1s committed
538
539
SparseTensor.__getitem__ = __getitem__
SparseTensor.__repr__ = __repr__
rusty1s's avatar
rusty1s committed
540
541
542

# Scipy Conversions ###########################################################

rusty1s's avatar
fixes  
rusty1s committed
543
544
ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.
                          csr_matrix, scipy.sparse.csc_matrix]
rusty1s's avatar
rusty1s committed
545
546
547


@torch.jit.ignore
rusty1s's avatar
rusty1s committed
548
def from_scipy(mat: ScipySparseMatrix, has_value: bool = True) -> SparseTensor:
rusty1s's avatar
rusty1s committed
549
550
551
552
553
554
555
556
557
    colptr = None
    if isinstance(mat, scipy.sparse.csc_matrix):
        colptr = torch.from_numpy(mat.indptr).to(torch.long)

    mat = mat.tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(torch.long)
    mat = mat.tocoo()
    row = torch.from_numpy(mat.row).to(torch.long)
    col = torch.from_numpy(mat.col).to(torch.long)
rusty1s's avatar
rusty1s committed
558
559
560
    value = None
    if has_value:
        value = torch.from_numpy(mat.data)
rusty1s's avatar
rusty1s committed
561
562
    sparse_sizes = mat.shape[:2]

rusty1s's avatar
rusty1s committed
563
564
565
566
    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=None,
                            colptr=colptr, colcount=None, csr2csc=None,
                            csc2csr=None, is_sorted=True)
rusty1s's avatar
rusty1s committed
567
568
569
570
571

    return SparseTensor.from_storage(storage)


@torch.jit.ignore
rusty1s's avatar
rusty1s committed
572
def to_scipy(self: SparseTensor, layout: Optional[str] = None,
rusty1s's avatar
rusty1s committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
             dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix:
    assert self.dim() == 2
    layout = get_layout(layout)

    if not self.has_value():
        ones = torch.ones(self.nnz(), dtype=dtype).numpy()

    if layout == 'coo':
        row, col, value = self.coo()
        row = row.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.coo_matrix((value, (row, col)), self.sizes())
    elif layout == 'csr':
        rowptr, col, value = self.csr()
        rowptr = rowptr.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csr_matrix((value, col, rowptr), self.sizes())
    elif layout == 'csc':
        colptr, row, value = self.csc()
        colptr = colptr.detach().cpu().numpy()
        row = row.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csc_matrix((value, row, colptr), self.sizes())


SparseTensor.from_scipy = from_scipy
SparseTensor.to_scipy = to_scipy