"git@developer.sourcefind.cn:OpenDAS/ollama.git" did not exist on "7a01ad76143973199bd6965c13476d2d04f10f75"
Commit c86527dc authored by rusty1s's avatar rusty1s
Browse files

test eye

parent 925f9567
from itertools import product
import pytest
import torch
from torch_sparse.tensor import SparseTensor
from .utils import dtypes, devices
......@@ -8,38 +9,44 @@ from .utils import dtypes, devices
@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_eye(dtype, device):
mat = SparseTensor.eye(3, dtype=dtype, device=device)
assert mat.storage.row.tolist() == [0, 1, 2]
assert mat.storage.rowptr.tolist() == [0, 1, 2, 3]
assert mat.storage.col.tolist() == [0, 1, 2]
assert mat.storage.value.tolist() == [1, 1, 1]
assert len(mat.cached_keys()) == 0
mat = SparseTensor.eye(3, dtype=dtype, device=device, has_value=False)
assert mat.storage.row.tolist() == [0, 1, 2]
assert mat.storage.rowptr.tolist() == [0, 1, 2, 3]
assert mat.storage.col.tolist() == [0, 1, 2]
assert mat.storage.value is None
assert len(mat.cached_keys()) == 0
mat = SparseTensor.eye(3, 4, dtype=dtype, device=device, fill_cache=True)
assert mat.storage.row.tolist() == [0, 1, 2]
assert mat.storage.rowptr.tolist() == [0, 1, 2, 3]
assert mat.storage.col.tolist() == [0, 1, 2]
assert len(mat.cached_keys()) == 5
assert mat.storage.rowcount.tolist() == [1, 1, 1]
assert mat.storage.colptr.tolist() == [0, 1, 2, 3, 3]
assert mat.storage.colcount.tolist() == [1, 1, 1, 0]
assert mat.storage.csr2csc.tolist() == [0, 1, 2]
assert mat.storage.csc2csr.tolist() == [0, 1, 2]
mat = SparseTensor.eye(4, 3, dtype=dtype, device=device, fill_cache=True)
assert mat.storage.row.tolist() == [0, 1, 2]
assert mat.storage.rowptr.tolist() == [0, 1, 2, 3, 3]
assert mat.storage.col.tolist() == [0, 1, 2]
assert len(mat.cached_keys()) == 5
assert mat.storage.rowcount.tolist() == [1, 1, 1, 0]
assert mat.storage.colptr.tolist() == [0, 1, 2, 3]
assert mat.storage.colcount.tolist() == [1, 1, 1]
assert mat.storage.csr2csc.tolist() == [0, 1, 2]
assert mat.storage.csc2csr.tolist() == [0, 1, 2]
options = torch.tensor(0, dtype=dtype, device=device)
mat = SparseTensor.eye(3, options=options)
assert mat.storage.sparse_sizes() == (3, 3)
assert mat.storage.row().tolist() == [0, 1, 2]
assert mat.storage.rowptr().tolist() == [0, 1, 2, 3]
assert mat.storage.col().tolist() == [0, 1, 2]
assert mat.storage.value().tolist() == [1, 1, 1]
assert mat.storage.num_cached_keys() == 0
mat = SparseTensor.eye(3, options=options, has_value=False)
assert mat.storage.sparse_sizes() == (3, 3)
assert mat.storage.row().tolist() == [0, 1, 2]
assert mat.storage.rowptr().tolist() == [0, 1, 2, 3]
assert mat.storage.col().tolist() == [0, 1, 2]
assert mat.storage.value() is None
assert mat.storage.num_cached_keys() == 0
mat = SparseTensor.eye(3, 4, options=options, fill_cache=True)
assert mat.storage.sparse_sizes() == (3, 4)
assert mat.storage.row().tolist() == [0, 1, 2]
assert mat.storage.rowptr().tolist() == [0, 1, 2, 3]
assert mat.storage.col().tolist() == [0, 1, 2]
assert mat.storage.num_cached_keys() == 5
assert mat.storage.rowcount().tolist() == [1, 1, 1]
assert mat.storage.colptr().tolist() == [0, 1, 2, 3, 3]
assert mat.storage.colcount().tolist() == [1, 1, 1, 0]
assert mat.storage.csr2csc().tolist() == [0, 1, 2]
assert mat.storage.csc2csr().tolist() == [0, 1, 2]
mat = SparseTensor.eye(4, 3, options=options, fill_cache=True)
assert mat.storage.sparse_sizes() == (4, 3)
assert mat.storage.row().tolist() == [0, 1, 2]
assert mat.storage.rowptr().tolist() == [0, 1, 2, 3, 3]
assert mat.storage.col().tolist() == [0, 1, 2]
assert mat.storage.num_cached_keys() == 5
assert mat.storage.rowcount().tolist() == [1, 1, 1, 0]
assert mat.storage.colptr().tolist() == [0, 1, 2, 3]
assert mat.storage.colcount().tolist() == [1, 1, 1]
assert mat.storage.csr2csc().tolist() == [0, 1, 2]
assert mat.storage.csc2csr().tolist() == [0, 1, 2]
......@@ -64,7 +64,7 @@ class SparseTensor(object):
rowptr = torch.arange(M + 1, dtype=torch.long, device=row.device)
if M > N:
rowptr[N + 1:] = M
rowptr[N + 1:] = N
value: Optional[torch.Tensor] = None
if has_value:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment