tensor.py 19.4 KB
Newer Older
rusty1s's avatar
repr  
rusty1s committed
1
from textwrap import indent
rusty1s's avatar
typing  
rusty1s committed
2
from typing import Optional, List, Tuple, Dict, Union, Any
rusty1s's avatar
rusty1s committed
3
4
5
6

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
7
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
8
from torch_sparse.utils import is_scalar
rusty1s's avatar
rusty1s committed
9
10


rusty1s's avatar
rusty1s committed
11
@torch.jit.script
rusty1s's avatar
rusty1s committed
12
class SparseTensor(object):
rusty1s's avatar
rusty1s committed
13
14
15
16
17
18
19
    storage: SparseStorage

    def __init__(self, row: Optional[torch.Tensor] = None,
                 rowptr: Optional[torch.Tensor] = None,
                 col: Optional[torch.Tensor] = None,
                 value: Optional[torch.Tensor] = None,
                 sparse_sizes: List[int] = None, is_sorted: bool = False):
rusty1s's avatar
rusty1s committed
20
        self.storage = SparseStorage(row=row, rowptr=rowptr, col=col,
rusty1s's avatar
rusty1s committed
21
22
23
                                     value=value, sparse_sizes=sparse_sizes,
                                     rowcount=None, colptr=None, colcount=None,
                                     csr2csc=None, csc2csr=None,
rusty1s's avatar
rusty1s committed
24
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
25
26

    @classmethod
rusty1s's avatar
rusty1s committed
27
    def from_storage(self, storage: SparseStorage):
rusty1s's avatar
rusty1s committed
28
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
29
        self.storage = storage
rusty1s's avatar
rusty1s committed
30
31
32
        return self

    @classmethod
rusty1s's avatar
rusty1s committed
33
    def from_dense(self, mat: torch.Tensor, has_value: bool = True):
rusty1s's avatar
rusty1s committed
34
35
36
37
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()
rusty1s's avatar
rusty1s committed
38
        index = index.t()
rusty1s's avatar
rusty1s committed
39

rusty1s's avatar
rusty1s committed
40
41
42
43
44
45
46
47
        row = index[0]
        col = index[1]

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat[row, col]

        return SparseTensor(row=row, rowptr=None, col=col, value=value,
rusty1s's avatar
rusty1s committed
48
                            sparse_sizes=mat.size()[:2], is_sorted=True)
rusty1s's avatar
rusty1s committed
49
50

    @classmethod
rusty1s's avatar
rusty1s committed
51
52
    def from_torch_sparse_coo_tensor(self, mat: torch.Tensor,
                                     has_value: bool = True):
rusty1s's avatar
rusty1s committed
53
54
55
        mat = mat.coalesce()
        index = mat._indices()
        row, col = index[0], index[1]
rusty1s's avatar
rusty1s committed
56
57
58
59
60
61

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat._values()

        return SparseTensor(row=row, rowptr=None, col=col, value=value,
rusty1s's avatar
rusty1s committed
62
                            sparse_sizes=mat.size()[:2], is_sorted=True)
rusty1s's avatar
rusty1s committed
63
64

    @classmethod
rusty1s's avatar
rusty1s committed
65
66
67
    def eye(self, M: int, N: Optional[int] = None,
            options: Optional[torch.Tensor] = None, has_value: bool = True,
            fill_cache: bool = False):
rusty1s's avatar
rusty1s committed
68

rusty1s's avatar
rusty1s committed
69
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
70

rusty1s's avatar
rusty1s committed
71
72
73
74
        if options is not None:
            row = torch.arange(min(M, N), device=options.device)
        else:
            row = torch.arange(min(M, N))
rusty1s's avatar
rusty1s committed
75
        col = row
rusty1s's avatar
rusty1s committed
76

rusty1s's avatar
rusty1s committed
77
78
        rowptr = torch.arange(M + 1, dtype=torch.long, device=row.device)
        if M > N:
rusty1s's avatar
rusty1s committed
79
            rowptr[N + 1:] = N
rusty1s's avatar
rusty1s committed
80
81

        value: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
82
        if has_value:
rusty1s's avatar
rusty1s committed
83
84
85
86
87
88
89
90
91
92
93
            if options is not None:
                value = torch.ones(row.numel(), dtype=options.dtype,
                                   device=row.device)
            else:
                value = torch.ones(row.numel(), device=row.device)

        rowcount: Optional[torch.Tensor] = None
        colptr: Optional[torch.Tensor] = None
        colcount: Optional[torch.Tensor] = None
        csr2csc: Optional[torch.Tensor] = None
        csc2csr: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
94
95

        if fill_cache:
rusty1s's avatar
rusty1s committed
96
            rowcount = torch.ones(M, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
97
            if M > N:
rusty1s's avatar
rusty1s committed
98
99
100
101
                rowcount[N:] = 0

            colptr = torch.arange(N + 1, dtype=torch.long, device=row.device)
            colcount = torch.ones(N, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
102
            if N > M:
rusty1s's avatar
rusty1s committed
103
104
                colptr[M + 1:] = M
                colcount[M:] = 0
rusty1s's avatar
rusty1s committed
105
106
            csr2csc = csc2csr = row

rusty1s's avatar
rusty1s committed
107
108
109
110
111
        storage: SparseStorage = SparseStorage(
            row=row, rowptr=rowptr, col=col, value=value,
            sparse_sizes=torch.Size([M, N]), rowcount=rowcount, colptr=colptr,
            colcount=colcount, csr2csc=csr2csc, csc2csr=csc2csr,
            is_sorted=True)
rusty1s's avatar
rusty1s committed
112

rusty1s's avatar
rusty1s committed
113
114
115
116
117
        self = SparseTensor.__new__(SparseTensor)
        self.storage = storage
        return self

    def copy(self):
rusty1s's avatar
rusty1s committed
118
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
119
120

    def clone(self):
rusty1s's avatar
rusty1s committed
121
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
122

rusty1s's avatar
rusty1s committed
123
124
125
126
127
128
129
130
131
132
    def type_as(self, tensor=torch.Tensor):
        value = self.storage._value
        if value is None or tensor.dtype == value.dtype:
            return self
        return self.from_storage(self.storage.type_as(tensor))

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        if tensor.device == self.device():
            return self
        return self.from_storage(self.storage.device_as(tensor, non_blocking))
rusty1s's avatar
rusty1s committed
133
134
135

    # Formats #################################################################

rusty1s's avatar
rusty1s committed
136
137
    def coo(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.row(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
138

rusty1s's avatar
rusty1s committed
139
140
    def csr(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.rowptr(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
141

rusty1s's avatar
rusty1s committed
142
143
144
145
146
147
    def csc(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        perm = self.storage.csr2csc()
        value = self.storage.value()
        if value is not None:
            value = value[perm]
        return self.storage.colptr(), self.storage.row()[perm], value
rusty1s's avatar
rusty1s committed
148
149
150

    # Storage inheritance #####################################################

rusty1s's avatar
rusty1s committed
151
    def has_value(self) -> bool:
rusty1s's avatar
rusty1s committed
152
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
153

rusty1s's avatar
rusty1s committed
154
155
156
    def set_value_(self, value: Optional[torch.Tensor],
                   layout: Optional[str] = None):
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
157
158
        return self

rusty1s's avatar
rusty1s committed
159
160
161
162
163
164
    def set_value(self, value: Optional[torch.Tensor],
                  layout: Optional[str] = None):
        return self.from_storage(self.storage.set_value(value, layout))

    def sparse_sizes(self) -> List[int]:
        return self.storage.sparse_sizes()
rusty1s's avatar
rusty1s committed
165

rusty1s's avatar
rusty1s committed
166
167
    def sparse_size(self, dim: int) -> int:
        return self.storage.sparse_sizes()[dim]
rusty1s's avatar
rusty1s committed
168

rusty1s's avatar
rusty1s committed
169
170
    def sparse_resize(self, sparse_sizes: List[int]):
        return self.from_storage(self.storage.sparse_resize(sparse_sizes))
rusty1s's avatar
rusty1s committed
171

rusty1s's avatar
rusty1s committed
172
    def is_coalesced(self) -> bool:
rusty1s's avatar
rusty1s committed
173
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
174

rusty1s's avatar
rusty1s committed
175
    def coalesce(self, reduce: str = "sum"):
rusty1s's avatar
rusty1s committed
176
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
177

rusty1s's avatar
rusty1s committed
178
179
    def fill_cache_(self):
        self.storage.fill_cache_()
rusty1s's avatar
rusty1s committed
180
181
        return self

rusty1s's avatar
rusty1s committed
182
183
    def clear_cache_(self):
        self.storage.clear_cache_()
rusty1s's avatar
rusty1s committed
184
185
186
187
        return self

    # Utility functions #######################################################

rusty1s's avatar
rusty1s committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def fill_value_(self, fill_value: float,
                    options: Optional[torch.Tensor] = None):
        if options is not None:
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
                               device=self.device())
        else:
            value = torch.full((self.nnz(), ), fill_value,
                               device=self.device())
        return self.set_value_(value, layout='coo')

    def fill_value(self, fill_value: float,
                   options: Optional[torch.Tensor] = None):
        if options is not None:
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
                               device=self.device())
        else:
            value = torch.full((self.nnz(), ), fill_value,
                               device=self.device())
        return self.set_value(value, layout='coo')

    def sizes(self) -> List[int]:
        sizes = self.sparse_sizes()
        value = self.storage.value()
        if value is not None:
rusty1s's avatar
rusty1s committed
212
            sizes = list(sizes) + list(value.size())[1:]
rusty1s's avatar
rusty1s committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        return sizes

    def size(self, dim: int) -> int:
        return self.sizes()[dim]

    def dim(self) -> int:
        return len(self.sizes())

    def nnz(self) -> int:
        return self.storage.col().numel()

    def numel(self) -> int:
        value = self.storage.value()
        if value is not None:
            return value.numel()
        else:
            return self.nnz()
rusty1s's avatar
rusty1s committed
230

rusty1s's avatar
rusty1s committed
231
    def density(self) -> float:
rusty1s's avatar
rusty1s committed
232
233
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

rusty1s's avatar
rusty1s committed
234
    def sparsity(self) -> float:
rusty1s's avatar
rusty1s committed
235
236
        return 1 - self.density()

rusty1s's avatar
rusty1s committed
237
    def avg_row_length(self) -> float:
rusty1s's avatar
rusty1s committed
238
239
        return self.nnz() / self.sparse_size(0)

rusty1s's avatar
rusty1s committed
240
    def avg_col_length(self) -> float:
rusty1s's avatar
rusty1s committed
241
242
        return self.nnz() / self.sparse_size(1)

rusty1s's avatar
rusty1s committed
243
    def is_quadratic(self) -> bool:
rusty1s's avatar
rusty1s committed
244
245
        return self.sparse_size(0) == self.sparse_size(1)

rusty1s's avatar
rusty1s committed
246
247
    def is_symmetric(self) -> bool:
        if not self.is_quadratic():
rusty1s's avatar
rusty1s committed
248
249
            return False

rusty1s's avatar
rusty1s committed
250
251
252
253
254
255
        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

rusty1s's avatar
rusty1s committed
256
        if value1 is None or value2 is None:
rusty1s's avatar
rusty1s committed
257
            return True
rusty1s's avatar
rusty1s committed
258
259
        else:
            return bool((value1 == value2).all())
rusty1s's avatar
rusty1s committed
260

rusty1s's avatar
rusty1s committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    def to_symmetric(self, reduce: str = "sum"):
        row, col, value = self.coo()

        row, col = torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)
        if value is not None:
            value = torch.cat([value, value], dim=0)

        N = max(self.size(0), self.size(1))

        out = SparseTensor(row=row, rowptr=None, col=col, value=value,
                           sparse_sizes=torch.Size([N, N]), is_sorted=False)
        out = out.coalesce(reduce)
        return out

rusty1s's avatar
rusty1s committed
275
    def detach_(self):
rusty1s's avatar
rusty1s committed
276
277
278
        value = self.storage.value()
        if value is not None:
            value.detach_()
rusty1s's avatar
rusty1s committed
279
280
281
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
282
283
284
285
286
287
288
289
290
291
292
        value = self.storage.value()
        if value is not None:
            value = value.detach()
        return self.set_value(value, layout='coo')

    def requires_grad(self) -> bool:
        value = self.storage.value()
        if value is not None:
            return value.requires_grad
        else:
            return False
rusty1s's avatar
rusty1s committed
293

rusty1s's avatar
rusty1s committed
294
295
    def requires_grad_(self, requires_grad: bool = True,
                       options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
296
        if requires_grad and not self.has_value():
rusty1s's avatar
rusty1s committed
297
            self.fill_value_(1., options=options)
rusty1s's avatar
rusty1s committed
298

rusty1s's avatar
rusty1s committed
299
300
301
        value = self.storage.value()
        if value is not None:
            value.requires_grad_(requires_grad)
rusty1s's avatar
rusty1s committed
302
303
        return self

rusty1s's avatar
rusty1s committed
304
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
305
        return self.from_storage(self.storage.pin_memory())
rusty1s's avatar
rusty1s committed
306

rusty1s's avatar
rusty1s committed
307
308
    def is_pinned(self) -> bool:
        return self.storage.is_pinned()
rusty1s's avatar
rusty1s committed
309

rusty1s's avatar
rusty1s committed
310
311
312
313
314
    def options(self) -> torch.Tensor:
        value = self.storage.value()
        if value is not None:
            return value
        else:
rusty1s's avatar
rusty1s committed
315
316
            return torch.tensor(0., dtype=torch.float,
                                device=self.storage.col().device)
rusty1s's avatar
rusty1s committed
317
318

    def device(self):
rusty1s's avatar
rusty1s committed
319
        return self.storage.col().device
rusty1s's avatar
rusty1s committed
320
321

    def cpu(self):
rusty1s's avatar
rusty1s committed
322
        return self.device_as(torch.tensor(0.), non_blocking=False)
rusty1s's avatar
rusty1s committed
323

rusty1s's avatar
rusty1s committed
324
325
326
    def cuda(self, options=Optional[torch.Tensor], non_blocking: bool = False):
        if options is not None:
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
327
        else:
rusty1s's avatar
rusty1s committed
328
329
            options = torch.tensor(0.).cuda()
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
330

rusty1s's avatar
rusty1s committed
331
332
    def is_cuda(self) -> bool:
        return self.storage.col().is_cuda
rusty1s's avatar
rusty1s committed
333

rusty1s's avatar
rusty1s committed
334
335
    def dtype(self):
        return self.options().dtype
rusty1s's avatar
rusty1s committed
336

rusty1s's avatar
rusty1s committed
337
338
    def is_floating_point(self) -> bool:
        return torch.is_floating_point(self.options())
rusty1s's avatar
rusty1s committed
339
340

    def bfloat16(self):
rusty1s's avatar
rusty1s committed
341
342
        return self.type_as(
            torch.tensor(0, dtype=torch.bfloat16, device=self.device()))
rusty1s's avatar
rusty1s committed
343
344

    def bool(self):
rusty1s's avatar
rusty1s committed
345
346
        return self.type_as(
            torch.tensor(0, dtype=torch.bool, device=self.device()))
rusty1s's avatar
rusty1s committed
347
348

    def byte(self):
rusty1s's avatar
rusty1s committed
349
350
        return self.type_as(
            torch.tensor(0, dtype=torch.uint8, device=self.device()))
rusty1s's avatar
rusty1s committed
351
352

    def char(self):
rusty1s's avatar
rusty1s committed
353
354
        return self.type_as(
            torch.tensor(0, dtype=torch.int8, device=self.device()))
rusty1s's avatar
rusty1s committed
355
356

    def half(self):
rusty1s's avatar
rusty1s committed
357
358
        return self.type_as(
            torch.tensor(0, dtype=torch.half, device=self.device()))
rusty1s's avatar
rusty1s committed
359
360

    def float(self):
rusty1s's avatar
rusty1s committed
361
362
        return self.type_as(
            torch.tensor(0, dtype=torch.float, device=self.device()))
rusty1s's avatar
rusty1s committed
363
364

    def double(self):
rusty1s's avatar
rusty1s committed
365
366
        return self.type_as(
            torch.tensor(0, dtype=torch.double, device=self.device()))
rusty1s's avatar
rusty1s committed
367
368

    def short(self):
rusty1s's avatar
rusty1s committed
369
370
        return self.type_as(
            torch.tensor(0, dtype=torch.short, device=self.device()))
rusty1s's avatar
rusty1s committed
371
372

    def int(self):
rusty1s's avatar
rusty1s committed
373
374
        return self.type_as(
            torch.tensor(0, dtype=torch.int, device=self.device()))
rusty1s's avatar
rusty1s committed
375
376

    def long(self):
rusty1s's avatar
rusty1s committed
377
378
        return self.type_as(
            torch.tensor(0, dtype=torch.long, device=self.device()))
rusty1s's avatar
rusty1s committed
379
380
381

    # Conversions #############################################################

rusty1s's avatar
rusty1s committed
382
    def to_dense(self, options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
383
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
384

rusty1s's avatar
fixes  
rusty1s committed
385
386
387
388
        if value is not None:
            mat = torch.zeros(self.sizes(), dtype=value.dtype,
                              device=self.device())
        elif options is not None:
rusty1s's avatar
rusty1s committed
389
390
391
392
393
394
395
396
397
398
399
            mat = torch.zeros(self.sizes(), dtype=options.dtype,
                              device=self.device())
        else:
            mat = torch.zeros(self.sizes(), device=self.device())

        if value is not None:
            mat[row, col] = value
        else:
            mat[row, col] = torch.ones(self.nnz(), dtype=mat.dtype,
                                       device=mat.device)

rusty1s's avatar
rusty1s committed
400
401
        return mat

rusty1s's avatar
rusty1s committed
402
403
    def to_torch_sparse_coo_tensor(self,
                                   options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
404
405
406
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)
        if value is None:
rusty1s's avatar
rusty1s committed
407
408
409
            if options is not None:
                value = torch.ones(self.nnz(), dtype=options.dtype,
                                   device=self.device())
rusty1s's avatar
rusty1s committed
410
            else:
rusty1s's avatar
rusty1s committed
411
                value = torch.ones(self.nnz(), device=self.device())
rusty1s's avatar
rusty1s committed
412

rusty1s's avatar
rusty1s committed
413
        return torch.sparse_coo_tensor(index, value, self.sizes())
rusty1s's avatar
rusty1s committed
414

rusty1s's avatar
rusty1s committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

# Python Bindings #############################################################

Dtype = Optional[torch.dtype]
Device = Optional[Union[torch.device, str]]


def share_memory_(self: SparseTensor) -> SparseTensor:
    self.storage.share_memory_()


def is_shared(self: SparseTensor) -> bool:
    return self.storage.is_shared()


rusty1s's avatar
typing  
rusty1s committed
430
431
432
def to(self, *args: Optional[List[Any]],
       **kwargs: Optional[Dict[str, Any]]) -> SparseTensor:

rusty1s's avatar
rusty1s committed
433
    device, dtype, non_blocking, _ = torch._C._nn._parse_to(*args, **kwargs)
rusty1s's avatar
rusty1s committed
434
435
436
437
438
439
440
441
442

    if dtype is not None:
        self = self.type_as(torch.tensor(0., dtype=dtype))
    if device is not None:
        self = self.device_as(torch.tensor(0., device=device), non_blocking)

    return self


rusty1s's avatar
typing  
rusty1s committed
443
def __getitem__(self: SparseTensor, index: Any) -> SparseTensor:
rusty1s's avatar
repr  
rusty1s committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    index = list(index) if isinstance(index, tuple) else [index]
    # More than one `Ellipsis` is not allowed...
    if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
        raise SyntaxError

    dim = 0
    out = self
    while len(index) > 0:
        item = index.pop(0)
        if isinstance(item, int):
            out = out.select(dim, item)
            dim += 1
        elif isinstance(item, slice):
            if item.step is not None:
                raise ValueError('Step parameter not yet supported.')

            start = 0 if item.start is None else item.start
            start = self.size(dim) + start if start < 0 else start

            stop = self.size(dim) if item.stop is None else item.stop
            stop = self.size(dim) + stop if stop < 0 else stop

            out = out.narrow(dim, start, max(stop - start, 0))
            dim += 1
        elif torch.is_tensor(item):
            if item.dtype == torch.bool:
                out = out.masked_select(dim, item)
                dim += 1
            elif item.dtype == torch.long:
                out = out.index_select(dim, item)
                dim += 1
        elif item == Ellipsis:
            if self.dim() - len(index) < dim:
                raise SyntaxError
            dim = self.dim() - len(index)
        else:
            raise SyntaxError

    return out


rusty1s's avatar
typing  
rusty1s committed
485
def __repr__(self: SparseTensor) -> str:
rusty1s's avatar
repr  
rusty1s committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    i = ' ' * 6
    row, col, value = self.coo()
    infos = []
    infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
    infos += [f'col={indent(col.__repr__(), i)[len(i):]}']

    if value is not None:
        infos += [f'val={indent(value.__repr__(), i)[len(i):]}']

    infos += [
        f'size={tuple(self.sizes())}, '
        f'nnz={self.nnz()}, '
        f'density={100 * self.density():.02f}%'
    ]
    infos = ',\n'.join(infos)

    i = ' ' * (len(self.__class__.__name__) + 1)
    return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


rusty1s's avatar
rusty1s committed
506
507
508
SparseTensor.share_memory_ = share_memory_
SparseTensor.is_shared = is_shared
SparseTensor.to = to
rusty1s's avatar
repr  
rusty1s committed
509
510
SparseTensor.__getitem__ = __getitem__
SparseTensor.__repr__ = __repr__
rusty1s's avatar
rusty1s committed
511
512
513
514
515
516
517
518

# Scipy Conversions ###########################################################

ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.
                          csr_matrix, scipy.sparse.csc_matrix]


@torch.jit.ignore
rusty1s's avatar
rusty1s committed
519
def from_scipy(mat: ScipySparseMatrix, has_value: bool = True) -> SparseTensor:
rusty1s's avatar
rusty1s committed
520
521
522
523
524
525
526
527
528
    colptr = None
    if isinstance(mat, scipy.sparse.csc_matrix):
        colptr = torch.from_numpy(mat.indptr).to(torch.long)

    mat = mat.tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(torch.long)
    mat = mat.tocoo()
    row = torch.from_numpy(mat.row).to(torch.long)
    col = torch.from_numpy(mat.col).to(torch.long)
rusty1s's avatar
rusty1s committed
529
530
531
    value = None
    if has_value:
        value = torch.from_numpy(mat.data)
rusty1s's avatar
rusty1s committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    sparse_sizes = mat.shape[:2]

    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=None,
                            colptr=colptr, colcount=None, csr2csc=None,
                            csc2csr=None, is_sorted=True)

    return SparseTensor.from_storage(storage)


@torch.jit.ignore
def to_scipy(self: SparseTensor, layout: Optional[str] = None,
             dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix:
    assert self.dim() == 2
    layout = get_layout(layout)

    if not self.has_value():
        ones = torch.ones(self.nnz(), dtype=dtype).numpy()

    if layout == 'coo':
        row, col, value = self.coo()
        row = row.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.coo_matrix((value, (row, col)), self.sizes())
    elif layout == 'csr':
        rowptr, col, value = self.csr()
        rowptr = rowptr.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csr_matrix((value, col, rowptr), self.sizes())
    elif layout == 'csc':
        colptr, row, value = self.csc()
        colptr = colptr.detach().cpu().numpy()
        row = row.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csc_matrix((value, row, colptr), self.sizes())


SparseTensor.from_scipy = from_scipy
SparseTensor.to_scipy = to_scipy

# Hacky fixes #################################################################

rusty1s's avatar
rusty1s committed
576
# Fix standard operators of `torch.Tensor` for PyTorch<=1.4.
rusty1s's avatar
rusty1s committed
577
# https://github.com/pytorch/pytorch/pull/31769
rusty1s's avatar
rusty1s committed
578
579
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
rusty1s's avatar
rusty1s committed
580
if (TORCH_MAJOR < 1) or (TORCH_MAJOR == 1 and TORCH_MINOR <= 4):
rusty1s's avatar
rusty1s committed
581
582

    def add(self, other):
rusty1s's avatar
rusty1s committed
583
584
585
        if torch.is_tensor(other) or is_scalar(other):
            return self.add(other)
        return NotImplemented
rusty1s's avatar
rusty1s committed
586
587

    def mul(self, other):
rusty1s's avatar
rusty1s committed
588
589
590
        if torch.is_tensor(other) or is_scalar(other):
            return self.mul(other)
        return NotImplemented
rusty1s's avatar
rusty1s committed
591
592

    torch.Tensor.__add__ = add
rusty1s's avatar
rusty1s committed
593
    torch.Tensor.__mul__ = mul