distributed_convolution.py 19.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import abc
from typing import List, Tuple, Union, Optional
Boris Bonev's avatar
Boris Bonev committed
34
35
from itertools import accumulate
from warnings import warn
36
37
38
39
40
41
42
43

import math

import torch
import torch.nn as nn

from functools import partial

Thorsten Kurth's avatar
Thorsten Kurth committed
44
from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes, _precompute_longitudes
45
from torch_harmonics._disco_convolution import _get_psi, _disco_s2_contraction_torch, _disco_s2_transpose_contraction_torch
Boris Bonev's avatar
Boris Bonev committed
46
from torch_harmonics._disco_convolution import _disco_s2_contraction_cuda, _disco_s2_transpose_contraction_cuda
47
from torch_harmonics.filter_basis import get_filter_basis
48
from torch_harmonics.convolution import (
Thorsten Kurth's avatar
Thorsten Kurth committed
49
    _precompute_convolution_tensor_s2,
50
51
52
    DiscreteContinuousConv,
)

53

54
55
from torch_harmonics.distributed import polar_group_size, azimuth_group_size
from torch_harmonics.distributed import distributed_transpose_azimuth, distributed_transpose_polar
56
from torch_harmonics.distributed import reduce_from_polar_region, scatter_to_polar_region, gather_from_polar_region, copy_to_polar_region
57
58
59
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim

60
# import custom C++/CUDA extensions if available
Boris Bonev's avatar
Boris Bonev committed
61
try:
62
    from disco_helpers import preprocess_psi
Boris Bonev's avatar
Boris Bonev committed
63
    import disco_cuda_extension
64

Boris Bonev's avatar
Boris Bonev committed
65
66
67
68
69
70
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False


Thorsten Kurth's avatar
Thorsten Kurth committed
71
72
73
74
75
def _split_distributed_convolution_tensor_s2(
    idx: torch.Tensor,
    vals: torch.Tensor,
    in_shape: Tuple[int],
    out_shape: Tuple[int],
Boris Bonev's avatar
Boris Bonev committed
76
):
apaaris's avatar
apaaris committed
77
    """
Andrea Paris's avatar
Andrea Paris committed
78
79
80
81
82
    Splits a pre-computed convolution tensor along the latitude dimension for distributed processing.
    
    This function takes a convolution tensor that was generated by the serial routine and filters
    it to only include entries corresponding to the local latitude slice assigned to this process.
    The filtering is done based on the polar group rank and the computed split shapes.
apaaris's avatar
apaaris committed
83
84
85

    Parameters
    ----------
Andrea Paris's avatar
Andrea Paris committed
86
87
88
89
    idx: torch.Tensor
        Indices of the pre-computed convolution tensor
    vals: torch.Tensor
        Values of the pre-computed convolution tensor
apaaris's avatar
apaaris committed
90
    in_shape: Tuple[int]
Andrea Paris's avatar
Andrea Paris committed
91
        Shape of the input tensor (nlat_in, nlon_in)
apaaris's avatar
apaaris committed
92
    out_shape: Tuple[int]
Andrea Paris's avatar
Andrea Paris committed
93
        Shape of the output tensor (nlat_out, nlon_out)
apaaris's avatar
apaaris committed
94
95
96

    Returns
    -------
Andrea Paris's avatar
Andrea Paris committed
97
98
99
100
    idx: torch.Tensor
        Filtered indices corresponding to the local latitude slice
    vals: torch.Tensor
        Filtered values corresponding to the local latitude slice
apaaris's avatar
apaaris committed
101
102
103
104
105
106
107
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

    kernel_size = filter_basis.kernel_size

108
109
110
    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

Boris Bonev's avatar
Boris Bonev committed
111
112
113
114
115
    comm_size_polar = polar_group_size()
    comm_rank_polar = polar_group_rank()
    split_shapes = compute_split_shapes(nlat_in, num_chunks=comm_size_polar)
    offsets = [0] + list(accumulate(split_shapes))
    start_idx = offsets[comm_rank_polar]
116
    end_idx = offsets[comm_rank_polar + 1]
Boris Bonev's avatar
Boris Bonev committed
117
118

    # once normalization is done we can throw away the entries which correspond to input latitudes we do not care about
Thorsten Kurth's avatar
Thorsten Kurth committed
119
120
    lats = idx[2] // nlon_in
    lons = idx[2] % nlon_in
Boris Bonev's avatar
Boris Bonev committed
121
    ilats = torch.argwhere((lats < end_idx) & (lats >= start_idx)).squeeze()
Thorsten Kurth's avatar
Thorsten Kurth committed
122
    vals = vals[ilats]
Boris Bonev's avatar
Boris Bonev committed
123
    # for the indices we need to recompute them to refer to local indices of the input tenor
Thorsten Kurth's avatar
Thorsten Kurth committed
124
    idx = torch.stack([idx[0, ilats], idx[1, ilats], (lats[ilats] - start_idx) * nlon_in + lons[ilats]], dim=0)
125

Thorsten Kurth's avatar
Thorsten Kurth committed
126
127
128
    # make results contiguous
    idx = idx.contiguous()
    vals = vals.to(dtype=torch.float32).contiguous()
129

Thorsten Kurth's avatar
Thorsten Kurth committed
130
    return idx, vals
131

Boris Bonev's avatar
Boris Bonev committed
132

133
134
135
class DistributedDiscreteContinuousConvS2(DiscreteContinuousConv):
    """
    Distributed version of Discrete-continuous convolutions (DISCO) on the 2-Sphere as described in [1].
apaaris's avatar
apaaris committed
136
    We assume the data can be splitted in polar and azimuthal directions.
137

apaaris's avatar
apaaris committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    Parameters
    ----------
    in_channels: int
        Number of input channels
    out_channels: int
        Number of output channels
    in_shape: Tuple[int]
        Shape of the input tensor
    out_shape: Tuple[int]
        Shape of the output tensor
    kernel_shape: Union[int, Tuple[int], Tuple[int, int]]
        Shape of the kernel
    basis_type: Optional[str]
        Type of basis to use
    basis_norm_mode: Optional[str]
        Normalization mode for the filter basis
    groups: Optional[int]
        Number of groups
    grid_in: Optional[str]
        Grid type for the input tensor  
    grid_out: Optional[str]
        Grid type for the output tensor
    bias: Optional[bool]
        Whether to use bias
    theta_cutoff: Optional[float]
        Theta cutoff for the filter basis

    Returns
    -------
    out: torch.Tensor
        Output tensor

    References
    ----------
172
173
174
175
176
177
178
179
180
    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
Thorsten Kurth's avatar
Thorsten Kurth committed
181
        kernel_shape: Union[int, Tuple[int], Tuple[int, int]],
182
        basis_type: Optional[str] = "piecewise linear",
183
        basis_norm_mode: Optional[str] = "mean",
184
185
186
187
188
189
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
190
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # compute theta cutoff based on the bandlimit of the input field
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
209
            theta_cutoff = torch.pi / float(self.nlat_out - 1)
210
211
212
213
214
215
216
217
218

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
        # of atomic reduction calls inside the actual kernel

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
219
220
        self.nlat_in_local = self.lat_in_shapes[self.comm_rank_polar]
        self.nlat_out_local = self.nlat_out
221

Thorsten Kurth's avatar
Thorsten Kurth committed
222
223
        # compute global convolution tensor
        idx, vals, _ = _precompute_convolution_tensor_s2(
224
225
226
227
228
229
230
231
232
            in_shape,
            out_shape,
            self.filter_basis,
            grid_in=grid_in,
            grid_out=grid_out,
            theta_cutoff=theta_cutoff,
            transpose_normalization=False,
            basis_norm_mode=basis_norm_mode,
            merge_quadrature=True,
Boris Bonev's avatar
Boris Bonev committed
233
        )
234

Thorsten Kurth's avatar
Thorsten Kurth committed
235
236
237
        # split the convolution tensor along latitude
        idx, vals = _split_distributed_convolution_tensor_s2(idx, vals, in_shape, out_shape)

Boris Bonev's avatar
Boris Bonev committed
238
239
240
241
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
242
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
243

244
245
246
247
248
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_out_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

249
        # save all datastructures
Boris Bonev's avatar
Boris Bonev committed
250
251
252
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
253
254
        self.register_buffer("psi_vals", vals, persistent=False)

255
256
257
        # store psi jic:
        self.psi = _get_psi(self.kernel_size, self.psi_idx, self.psi_vals, self.nlat_in, self.nlon_in, self.nlat_out, self.nlon_out, self.nlat_in_local, self.nlat_out_local)

258
    def extra_repr(self):
259
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
260

Boris Bonev's avatar
Boris Bonev committed
261
262
263
264
265
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
266
267
268

        # store number of channels
        num_chans = x.shape[1]
269

270
271
272
273
        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)

Boris Bonev's avatar
Boris Bonev committed
274
275
276
277
278
279
280
        if x.is_cuda and _cuda_extension_available:
            x = _disco_s2_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
        else:
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
281

282
            x = _disco_s2_contraction_torch(x, self.psi.to(x.device), self.nlon_out)
283

Thorsten Kurth's avatar
Thorsten Kurth committed
284
        # perform reduce scatter in polar region
285
        x = reduce_from_polar_region(x)
286
        x = scatter_to_polar_region(x, -2)
287
288
289
290
291
292
293
294
295
296
297
298

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            x = distributed_transpose_azimuth.apply(x, (-1, 1), chan_shapes)

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
        out = torch.einsum("bgckxy,gock->bgoxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
299
        out = out.reshape(out.shape[0], -1, H, W)
300
301
302
303
304
305
306
307
308
309
310

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DistributedDiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
    """
    Discrete-continuous transpose convolutions (DISCO) on the 2-Sphere as described in [1].

apaaris's avatar
apaaris committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    Parameters
    ----------
    in_channels: int
        Number of input channels
    out_channels: int
        Number of output channels
    in_shape: Tuple[int]
        Shape of the input tensor
    out_shape: Tuple[int]
        Shape of the output tensor
    kernel_shape: Union[int, Tuple[int], Tuple[int, int]]
        Shape of the kernel
    basis_type: Optional[str]
        Type of basis to use
    basis_norm_mode: Optional[str]
        Normalization mode for the filter basis
    groups: Optional[int]
        Number of groups
    grid_in: Optional[str]
        Grid type for the input tensor  
    grid_out: Optional[str]
        Grid type for the output tensor
    bias: Optional[bool]
        Whether to use bias
    theta_cutoff: Optional[float]
        Theta cutoff for the filter basis

    Returns
    -------
    out: torch.Tensor
        Output tensor

    References
    ----------
345
    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
Thorsten Kurth's avatar
Thorsten Kurth committed
346
347

    We assume the data can be splitted in polar and azimuthal directions.
348
349
350
351
352
353
354
355
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
Thorsten Kurth's avatar
Thorsten Kurth committed
356
        kernel_shape: Union[int, Tuple[int], Tuple[int, int]],
357
        basis_type: Optional[str] = "piecewise linear",
358
        basis_norm_mode: Optional[str] = "mean",
359
360
361
362
363
364
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
365
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # bandlimit
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
384
            theta_cutoff = torch.pi / float(self.nlat_in - 1)
385
386
387
388
389
390

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
Boris Bonev's avatar
Boris Bonev committed
391
        # of atomic reduction calls inside the actual kernel
392
393

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
394
395
        self.nlat_in_local = self.nlat_in
        self.nlat_out_local = self.lat_out_shapes[self.comm_rank_polar]
396

Thorsten Kurth's avatar
Thorsten Kurth committed
397
        # compute global convolution tensor
398
399
        # switch in_shape and out_shape since we want transpose conv
        # distributed mode here is swapped because of the transpose
Thorsten Kurth's avatar
Thorsten Kurth committed
400
        idx, vals, _ = _precompute_convolution_tensor_s2(
401
402
403
404
405
406
407
408
409
            out_shape,
            in_shape,
            self.filter_basis,
            grid_in=grid_out,
            grid_out=grid_in,
            theta_cutoff=theta_cutoff,
            transpose_normalization=True,
            basis_norm_mode=basis_norm_mode,
            merge_quadrature=True,
Boris Bonev's avatar
Boris Bonev committed
410
        )
411

Thorsten Kurth's avatar
Thorsten Kurth committed
412
413
414
415
        # split the convolution tensor along latitude, again, we need to swap the meaning
        # of in_shape and out_shape
        idx, vals = _split_distributed_convolution_tensor_s2(idx, vals, out_shape, in_shape)

Boris Bonev's avatar
Boris Bonev committed
416
417
418
419
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
420
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
421

422
423
424
425
426
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_in_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

427
        # save all datastructures
Boris Bonev's avatar
Boris Bonev committed
428
429
430
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
431
432
        self.register_buffer("psi_vals", vals, persistent=False)

433
434
435
        # store psi as COO
        self.psi_st = _get_psi(self.kernel_size, self.psi_idx, self.psi_vals, self.nlat_in, self.nlon_in, self.nlat_out, self.nlon_out, self.nlat_in_local, self.nlat_out_local, semi_transposed=True)

436
    def extra_repr(self):
437
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
438

Boris Bonev's avatar
Boris Bonev committed
439
440
441
442
443
444
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

    def forward(self, x: torch.Tensor) -> torch.Tensor:

445
446
447
448
449
450
        # extract shape
        B, C, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
        x = torch.einsum("bgcxy,gock->bgokxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
451
        x = x.reshape(B, -1, x.shape[-3], H, W)
452
        num_chans = x.shape[1]
Boris Bonev's avatar
Boris Bonev committed
453

454
455
456
        # transpose such that lon is local, channels are split
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)
Boris Bonev's avatar
Boris Bonev committed
457

Thorsten Kurth's avatar
Thorsten Kurth committed
458
        # gather input tensor and set up backward reduction hooks
459
460
        x = gather_from_polar_region(x, -2, self.lat_in_shapes)
        x = copy_to_polar_region(x)
Boris Bonev's avatar
Boris Bonev committed
461
462
463
464
465

        if x.is_cuda and _cuda_extension_available:
            out = _disco_s2_transpose_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
466
        else:
Boris Bonev's avatar
Boris Bonev committed
467
468
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
469
            out = _disco_s2_transpose_contraction_torch(x, self.psi_st.to(x.device), self.nlon_out)
470
471
472
473
474
475
476
477
478
479

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            out = distributed_transpose_azimuth.apply(out, (-1, 1), chan_shapes)

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out