distributed_convolution.py 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import abc
from typing import List, Tuple, Union, Optional
Boris Bonev's avatar
Boris Bonev committed
34
35
from itertools import accumulate
from warnings import warn
36
37
38
39
40
41
42
43
44

import math

import torch
import torch.nn as nn

from functools import partial

from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes
Boris Bonev's avatar
Boris Bonev committed
45
46
from torch_harmonics._disco_convolution import _disco_s2_contraction_torch, _disco_s2_transpose_contraction_torch
from torch_harmonics._disco_convolution import _disco_s2_contraction_cuda, _disco_s2_transpose_contraction_cuda
47
from torch_harmonics._filter_basis import compute_kernel_size
48
49
50
from torch_harmonics.convolution import (
    _compute_support_vals_isotropic,
    _compute_support_vals_anisotropic,
Boris Bonev's avatar
Boris Bonev committed
51
    _normalize_convolution_tensor_s2,
52
53
54
    DiscreteContinuousConv,
)

55

56
57
from torch_harmonics.distributed import polar_group_size, azimuth_group_size
from torch_harmonics.distributed import distributed_transpose_azimuth, distributed_transpose_polar
58
from torch_harmonics.distributed import reduce_from_polar_region, scatter_to_polar_region, gather_from_polar_region, copy_to_polar_region
59
60
61
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim

62
# import custom C++/CUDA extensions if available
Boris Bonev's avatar
Boris Bonev committed
63
try:
64
    from disco_helpers import preprocess_psi
Boris Bonev's avatar
Boris Bonev committed
65
    import disco_cuda_extension
66

Boris Bonev's avatar
Boris Bonev committed
67
68
69
70
71
72
73
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False


def _precompute_distributed_convolution_tensor_s2(
74
75
76
77
78
79
80
81
82
    in_shape,
    out_shape,
    kernel_shape,
    basis_type="piecewise linear",
    grid_in="equiangular",
    grid_out="equiangular",
    theta_cutoff=0.01 * math.pi,
    transpose_normalization=False,
    merge_quadrature=False,
Boris Bonev's avatar
Boris Bonev committed
83
):
84
85
86
87
88
89
90
91
    """
    Precomputes the rotated filters at positions $R^{-1}_j \omega_i = R^{-1}_j R_i \nu = Y(-\theta_j)Z(\phi_i - \phi_j)Y(\theta_j)\nu$.
    Assumes a tensorized grid on the sphere with an equidistant sampling in longitude as described in Ocampo et al.
    The output tensor has shape kernel_shape x nlat_out x (nlat_in * nlon_in).

    The rotation of the Euler angles uses the YZY convention, which applied to the northpole $(0,0,1)^T$ yields
    $$
    Y(\alpha) Z(\beta) Y(\gamma) n =
Boris Bonev's avatar
Boris Bonev committed
92
        {\begin{bmatrix}
93
94
95
96
97
98
99
100
101
102
            \cos(\gamma)\sin(\alpha) + \cos(\alpha)\cos(\beta)\sin(\gamma) \\
            \sin(\beta)\sin(\gamma) \\
            \cos(\alpha)\cos(\gamma)-\cos(\beta)\sin(\alpha)\sin(\gamma)
        \end{bmatrix}}
    $$
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

103
104
    kernel_size = compute_kernel_size(kernel_shape=kernel_shape, basis_type=basis_type)

105
    if len(kernel_shape) == 1:
Boris Bonev's avatar
Boris Bonev committed
106
        kernel_handle = partial(_compute_support_vals_isotropic, nr=kernel_shape[0], r_cutoff=theta_cutoff)
107
    elif len(kernel_shape) == 2:
Boris Bonev's avatar
Boris Bonev committed
108
        kernel_handle = partial(_compute_support_vals_anisotropic, nr=kernel_shape[0], nphi=kernel_shape[1], r_cutoff=theta_cutoff)
109
110
111
112
113
114
    else:
        raise ValueError("kernel_shape should be either one- or two-dimensional.")

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

Boris Bonev's avatar
Boris Bonev committed
115
    lats_in, win = _precompute_latitudes(nlat_in, grid=grid_in)
116
    lats_in = torch.from_numpy(lats_in).float()
Boris Bonev's avatar
Boris Bonev committed
117
    lats_out, wout = _precompute_latitudes(nlat_out, grid=grid_out)
118
119
120
121
122
    lats_out = torch.from_numpy(lats_out).float()

    # compute the phi differences
    # It's imporatant to not include the 2 pi point in the longitudes, as it is equivalent to lon=0
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]
Boris Bonev's avatar
Boris Bonev committed
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    out_idx = []
    out_vals = []
    for t in range(nlat_out):
        # the last angle has a negative sign as it is a passive rotation, which rotates the filter around the y-axis
        alpha = -lats_out[t]
        beta = lons_in
        gamma = lats_in.reshape(-1, 1)

        # compute cartesian coordinates of the rotated position
        # This uses the YZY convention of Euler angles, where the last angle (alpha) is a passive rotation,
        # and therefore applied with a negative sign
        z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)
        x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
        y = torch.sin(beta) * torch.sin(gamma)

        # normalization is emportant to avoid NaNs when arccos and atan are applied
        # this can otherwise lead to spurious artifacts in the solution
        norm = torch.sqrt(x * x + y * y + z * z)
        x = x / norm
        y = y / norm
        z = z / norm

        # compute spherical coordinates, where phi needs to fall into the [0, 2pi) range
        theta = torch.arccos(z)
        phi = torch.arctan2(y, x) + torch.pi

        # find the indices where the rotated position falls into the support of the kernel
        iidx, vals = kernel_handle(theta, phi)

        # add the output latitude and reshape such that psi has dimensions kernel_shape x nlat_out x (nlat_in*nlon_in)
        idx = torch.stack([iidx[:, 0], t * torch.ones_like(iidx[:, 0]), iidx[:, 1] * nlon_in + iidx[:, 2]], dim=0)

        # append indices and values to the COO datastructure
        out_idx.append(idx)
        out_vals.append(vals)

    # concatenate the indices and values
Boris Bonev's avatar
Boris Bonev committed
161
162
163
164
165
166
167
168
    out_idx = torch.cat(out_idx, dim=-1).to(torch.long).contiguous()
    out_vals = torch.cat(out_vals, dim=-1).to(torch.float32).contiguous()

    # perform the normalization over the entire psi matrix
    if transpose_normalization:
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wout).float().reshape(-1, 1) / nlon_in
    else:
        quad_weights = 2.0 * torch.pi * torch.from_numpy(win).float().reshape(-1, 1) / nlon_in
169
170
171
    out_vals = _normalize_convolution_tensor_s2(
        out_idx, out_vals, in_shape, out_shape, kernel_size, quad_weights, transpose_normalization=transpose_normalization, merge_quadrature=merge_quadrature
    )
Boris Bonev's avatar
Boris Bonev committed
172
173
174
175
176
177
178
179

    # TODO: this part can be split off into it's own function
    # split the latitude indices:
    comm_size_polar = polar_group_size()
    comm_rank_polar = polar_group_rank()
    split_shapes = compute_split_shapes(nlat_in, num_chunks=comm_size_polar)
    offsets = [0] + list(accumulate(split_shapes))
    start_idx = offsets[comm_rank_polar]
180
    end_idx = offsets[comm_rank_polar + 1]
Boris Bonev's avatar
Boris Bonev committed
181
182
183
184
185
186
187

    # once normalization is done we can throw away the entries which correspond to input latitudes we do not care about
    lats = out_idx[2] // nlon_in
    lons = out_idx[2] % nlon_in
    ilats = torch.argwhere((lats < end_idx) & (lats >= start_idx)).squeeze()
    out_vals = out_vals[ilats]
    # for the indices we need to recompute them to refer to local indices of the input tenor
188
    out_idx = torch.stack([out_idx[0, ilats], out_idx[1, ilats], (lats[ilats] - start_idx) * nlon_in + lons[ilats]], dim=0)
189
190
191

    return out_idx, out_vals

Boris Bonev's avatar
Boris Bonev committed
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
class DistributedDiscreteContinuousConvS2(DiscreteContinuousConv):
    """
    Distributed version of Discrete-continuous convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603

    We assume the data can be splitted in polar and azimuthal directions.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # compute theta cutoff based on the bandlimit of the input field
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
234
            theta_cutoff = torch.pi / float(self.nlat_out - 1)
235
236
237
238
239
240
241
242
243

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
        # of atomic reduction calls inside the actual kernel

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
244
245
246
        self.nlat_in_local = self.lat_in_shapes[self.comm_rank_polar]
        self.nlat_out_local = self.nlat_out
        idx, vals = _precompute_distributed_convolution_tensor_s2(
247
            in_shape, out_shape, self.kernel_shape, grid_in=grid_in, grid_out=grid_out, theta_cutoff=theta_cutoff, transpose_normalization=False, merge_quadrature=True
Boris Bonev's avatar
Boris Bonev committed
248
        )
249

Boris Bonev's avatar
Boris Bonev committed
250
251
252
253
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
254
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
255

256
257
258
259
260
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_out_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

Boris Bonev's avatar
Boris Bonev committed
261
262
263
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
264
265
        self.register_buffer("psi_vals", vals, persistent=False)

266
267
268
269
270
271
    def extra_repr(self):
        r"""
        Pretty print module
        """
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, kernel_shape={self.kernel_shape}, groups={self.groups}"

Boris Bonev's avatar
Boris Bonev committed
272
273
274
275
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

276
277
278
279
    def get_psi(self):
        psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_in)).coalesce()
        return psi

Boris Bonev's avatar
Boris Bonev committed
280
    def forward(self, x: torch.Tensor) -> torch.Tensor:
281
282
283

        # store number of channels
        num_chans = x.shape[1]
284

285
286
287
288
        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)

Boris Bonev's avatar
Boris Bonev committed
289
290
291
292
293
294
295
        if x.is_cuda and _cuda_extension_available:
            x = _disco_s2_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
        else:
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
296

Boris Bonev's avatar
Boris Bonev committed
297
            psi = self.get_psi()
298
299
300

            x = _disco_s2_contraction_torch(x, psi, self.nlon_out)

Thorsten Kurth's avatar
Thorsten Kurth committed
301
        # perform reduce scatter in polar region
302
        x = reduce_from_polar_region(x)
303
        x = scatter_to_polar_region(x, -2)
304
305
306
307
308
309
310
311
312
313
314
315

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            x = distributed_transpose_azimuth.apply(x, (-1, 1), chan_shapes)

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
        out = torch.einsum("bgckxy,gock->bgoxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
316
        out = out.reshape(out.shape[0], -1, H, W)
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DistributedDiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
    """
    Discrete-continuous transpose convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # bandlimit
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
363
            theta_cutoff = torch.pi / float(self.nlat_in - 1)
364
365
366
367
368
369

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
Boris Bonev's avatar
Boris Bonev committed
370
        # of atomic reduction calls inside the actual kernel
371
372

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
373
374
        self.nlat_in_local = self.nlat_in
        self.nlat_out_local = self.lat_out_shapes[self.comm_rank_polar]
375
376
377

        # switch in_shape and out_shape since we want transpose conv
        # distributed mode here is swapped because of the transpose
Boris Bonev's avatar
Boris Bonev committed
378
        idx, vals = _precompute_distributed_convolution_tensor_s2(
379
            out_shape, in_shape, self.kernel_shape, grid_in=grid_out, grid_out=grid_in, theta_cutoff=theta_cutoff, transpose_normalization=True, merge_quadrature=True
Boris Bonev's avatar
Boris Bonev committed
380
        )
381

Boris Bonev's avatar
Boris Bonev committed
382
383
384
385
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
386
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
387

388
389
390
391
392
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_in_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

Boris Bonev's avatar
Boris Bonev committed
393
394
395
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
396
397
        self.register_buffer("psi_vals", vals, persistent=False)

398
399
400
401
402
403
    def extra_repr(self):
        r"""
        Pretty print module
        """
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, kernel_shape={self.kernel_shape}, groups={self.groups}"

Boris Bonev's avatar
Boris Bonev committed
404
405
406
407
408
409
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

    def get_psi(self, semi_transposed: bool = False):
        if semi_transposed:
410
411
412
413
414
415
416
            # do partial transpose
            # we do a semi-transposition to faciliate the computation
            tout = self.psi_idx[2] // self.nlon_out
            pout = self.psi_idx[2] % self.nlon_out
            # flip the axis of longitudes
            pout = self.nlon_out - 1 - pout
            tin = self.psi_idx[1]
Boris Bonev's avatar
Boris Bonev committed
417
            idx = torch.stack([self.psi_idx[0], tout, tin * self.nlon_out + pout], dim=0)
418
419
420
421
            psi = torch.sparse_coo_tensor(idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_out)).coalesce()
        else:
            psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_in_local, self.nlat_out_local * self.nlon_out)).coalesce()
        return psi
Boris Bonev's avatar
Boris Bonev committed
422
423
424

    def forward(self, x: torch.Tensor) -> torch.Tensor:

425
426
427
428
429
430
        # extract shape
        B, C, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
        x = torch.einsum("bgcxy,gock->bgokxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
431
        x = x.reshape(B, -1, x.shape[-3], H, W)
432
        num_chans = x.shape[1]
Boris Bonev's avatar
Boris Bonev committed
433

434
435
436
        # transpose such that lon is local, channels are split
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)
Boris Bonev's avatar
Boris Bonev committed
437

Thorsten Kurth's avatar
Thorsten Kurth committed
438
        # gather input tensor and set up backward reduction hooks
439
440
        x = gather_from_polar_region(x, -2, self.lat_in_shapes)
        x = copy_to_polar_region(x)
Boris Bonev's avatar
Boris Bonev committed
441
442
443
444
445

        if x.is_cuda and _cuda_extension_available:
            out = _disco_s2_transpose_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
446
        else:
Boris Bonev's avatar
Boris Bonev committed
447
448
449
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
            psi = self.get_psi(semi_transposed=True)
450
451
452
453
454
455
456
457
458
459
460
            out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            out = distributed_transpose_azimuth.apply(out, (-1, 1), chan_shapes)

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out