distributed_convolution.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import abc
from typing import List, Tuple, Union, Optional
Boris Bonev's avatar
Boris Bonev committed
34
35
from itertools import accumulate
from warnings import warn
36
37
38
39
40
41
42
43
44

import math

import torch
import torch.nn as nn

from functools import partial

from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes
Boris Bonev's avatar
Boris Bonev committed
45
46
from torch_harmonics._disco_convolution import _disco_s2_contraction_torch, _disco_s2_transpose_contraction_torch
from torch_harmonics._disco_convolution import _disco_s2_contraction_cuda, _disco_s2_transpose_contraction_cuda
47
from torch_harmonics.filter_basis import get_filter_basis
48
from torch_harmonics.convolution import (
Boris Bonev's avatar
Boris Bonev committed
49
    _normalize_convolution_tensor_s2,
50
51
52
    DiscreteContinuousConv,
)

53

54
55
from torch_harmonics.distributed import polar_group_size, azimuth_group_size
from torch_harmonics.distributed import distributed_transpose_azimuth, distributed_transpose_polar
56
from torch_harmonics.distributed import reduce_from_polar_region, scatter_to_polar_region, gather_from_polar_region, copy_to_polar_region
57
58
59
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim

60
# import custom C++/CUDA extensions if available
Boris Bonev's avatar
Boris Bonev committed
61
try:
62
    from disco_helpers import preprocess_psi
Boris Bonev's avatar
Boris Bonev committed
63
    import disco_cuda_extension
64

Boris Bonev's avatar
Boris Bonev committed
65
66
67
68
69
70
71
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False


def _precompute_distributed_convolution_tensor_s2(
72
73
    in_shape,
    out_shape,
74
    filter_basis,
75
76
77
78
    grid_in="equiangular",
    grid_out="equiangular",
    theta_cutoff=0.01 * math.pi,
    transpose_normalization=False,
79
    basis_norm_mode="mean",
80
    merge_quadrature=False,
Boris Bonev's avatar
Boris Bonev committed
81
):
82
83
84
85
86
87
88
89
    """
    Precomputes the rotated filters at positions $R^{-1}_j \omega_i = R^{-1}_j R_i \nu = Y(-\theta_j)Z(\phi_i - \phi_j)Y(\theta_j)\nu$.
    Assumes a tensorized grid on the sphere with an equidistant sampling in longitude as described in Ocampo et al.
    The output tensor has shape kernel_shape x nlat_out x (nlat_in * nlon_in).

    The rotation of the Euler angles uses the YZY convention, which applied to the northpole $(0,0,1)^T$ yields
    $$
    Y(\alpha) Z(\beta) Y(\gamma) n =
Boris Bonev's avatar
Boris Bonev committed
90
        {\begin{bmatrix}
91
92
93
94
95
96
97
98
99
100
            \cos(\gamma)\sin(\alpha) + \cos(\alpha)\cos(\beta)\sin(\gamma) \\
            \sin(\beta)\sin(\gamma) \\
            \cos(\alpha)\cos(\gamma)-\cos(\beta)\sin(\alpha)\sin(\gamma)
        \end{bmatrix}}
    $$
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

101
    kernel_size = filter_basis.kernel_size
102
103
104
105

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

Boris Bonev's avatar
Boris Bonev committed
106
    lats_in, win = _precompute_latitudes(nlat_in, grid=grid_in)
107
    lats_in = torch.from_numpy(lats_in).float()
Boris Bonev's avatar
Boris Bonev committed
108
    lats_out, wout = _precompute_latitudes(nlat_out, grid=grid_out)
109
110
111
112
113
    lats_out = torch.from_numpy(lats_out).float()

    # compute the phi differences
    # It's imporatant to not include the 2 pi point in the longitudes, as it is equivalent to lon=0
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]
Boris Bonev's avatar
Boris Bonev committed
114

115
116
    # compute quadrature weights and merge them into the convolution tensor.
    # These quadrature integrate to 1 over the sphere.
117
    if transpose_normalization:
118
        quad_weights = torch.from_numpy(wout).float().reshape(-1, 1) / nlon_in / 2.0
119
    else:
120
        quad_weights = torch.from_numpy(win).float().reshape(-1, 1) / nlon_in / 2.0
121

122
123
124
125
126
127
128
129
130
131
132
133
134
    out_idx = []
    out_vals = []
    for t in range(nlat_out):
        # the last angle has a negative sign as it is a passive rotation, which rotates the filter around the y-axis
        alpha = -lats_out[t]
        beta = lons_in
        gamma = lats_in.reshape(-1, 1)

        # compute cartesian coordinates of the rotated position
        # This uses the YZY convention of Euler angles, where the last angle (alpha) is a passive rotation,
        # and therefore applied with a negative sign
        x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
        y = torch.sin(beta) * torch.sin(gamma)
135
        z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)
136

137
        # normalization is important to avoid NaNs when arccos and atan are applied
138
139
140
141
142
143
144
145
        # this can otherwise lead to spurious artifacts in the solution
        norm = torch.sqrt(x * x + y * y + z * z)
        x = x / norm
        y = y / norm
        z = z / norm

        # compute spherical coordinates, where phi needs to fall into the [0, 2pi) range
        theta = torch.arccos(z)
146
147
        phi = torch.arctan2(y, x)
        phi = torch.where(phi < 0.0, phi + 2 * torch.pi, phi)
148
149

        # find the indices where the rotated position falls into the support of the kernel
150
        iidx, vals = filter_basis.compute_support_vals(theta, phi, r_cutoff=theta_cutoff)
151
152
153
154
155
156
157
158
159

        # add the output latitude and reshape such that psi has dimensions kernel_shape x nlat_out x (nlat_in*nlon_in)
        idx = torch.stack([iidx[:, 0], t * torch.ones_like(iidx[:, 0]), iidx[:, 1] * nlon_in + iidx[:, 2]], dim=0)

        # append indices and values to the COO datastructure
        out_idx.append(idx)
        out_vals.append(vals)

    # concatenate the indices and values
Boris Bonev's avatar
Boris Bonev committed
160
161
162
    out_idx = torch.cat(out_idx, dim=-1).to(torch.long).contiguous()
    out_vals = torch.cat(out_vals, dim=-1).to(torch.float32).contiguous()

163
    out_vals = _normalize_convolution_tensor_s2(
164
165
166
167
168
169
170
171
172
        out_idx,
        out_vals,
        in_shape,
        out_shape,
        kernel_size,
        quad_weights,
        transpose_normalization=transpose_normalization,
        basis_norm_mode=basis_norm_mode,
        merge_quadrature=merge_quadrature,
173
    )
Boris Bonev's avatar
Boris Bonev committed
174
175
176
177
178
179
180
181

    # TODO: this part can be split off into it's own function
    # split the latitude indices:
    comm_size_polar = polar_group_size()
    comm_rank_polar = polar_group_rank()
    split_shapes = compute_split_shapes(nlat_in, num_chunks=comm_size_polar)
    offsets = [0] + list(accumulate(split_shapes))
    start_idx = offsets[comm_rank_polar]
182
    end_idx = offsets[comm_rank_polar + 1]
Boris Bonev's avatar
Boris Bonev committed
183
184
185
186
187
188
189

    # once normalization is done we can throw away the entries which correspond to input latitudes we do not care about
    lats = out_idx[2] // nlon_in
    lons = out_idx[2] % nlon_in
    ilats = torch.argwhere((lats < end_idx) & (lats >= start_idx)).squeeze()
    out_vals = out_vals[ilats]
    # for the indices we need to recompute them to refer to local indices of the input tenor
190
    out_idx = torch.stack([out_idx[0, ilats], out_idx[1, ilats], (lats[ilats] - start_idx) * nlon_in + lons[ilats]], dim=0)
191
192
193

    return out_idx, out_vals

Boris Bonev's avatar
Boris Bonev committed
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
class DistributedDiscreteContinuousConvS2(DiscreteContinuousConv):
    """
    Distributed version of Discrete-continuous convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603

    We assume the data can be splitted in polar and azimuthal directions.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
211
        basis_type: Optional[str] = "piecewise linear",
212
        basis_norm_mode: Optional[str] = "mean",
213
214
215
216
217
218
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
219
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # compute theta cutoff based on the bandlimit of the input field
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
238
            theta_cutoff = torch.pi / float(self.nlat_out - 1)
239
240
241
242
243
244
245
246
247

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
        # of atomic reduction calls inside the actual kernel

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
248
249
        self.nlat_in_local = self.lat_in_shapes[self.comm_rank_polar]
        self.nlat_out_local = self.nlat_out
250

Boris Bonev's avatar
Boris Bonev committed
251
        idx, vals = _precompute_distributed_convolution_tensor_s2(
252
253
254
255
256
257
258
259
260
            in_shape,
            out_shape,
            self.filter_basis,
            grid_in=grid_in,
            grid_out=grid_out,
            theta_cutoff=theta_cutoff,
            transpose_normalization=False,
            basis_norm_mode=basis_norm_mode,
            merge_quadrature=True,
Boris Bonev's avatar
Boris Bonev committed
261
        )
262

Boris Bonev's avatar
Boris Bonev committed
263
264
265
266
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
267
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
268

269
270
271
272
273
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_out_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

274
        # save all datastructures
Boris Bonev's avatar
Boris Bonev committed
275
276
277
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
278
279
        self.register_buffer("psi_vals", vals, persistent=False)

280
281
282
283
    def extra_repr(self):
        r"""
        Pretty print module
        """
284
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
285

Boris Bonev's avatar
Boris Bonev committed
286
287
288
289
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

290
291
292
293
    def get_psi(self):
        psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_in)).coalesce()
        return psi

Boris Bonev's avatar
Boris Bonev committed
294
    def forward(self, x: torch.Tensor) -> torch.Tensor:
295
296
297

        # store number of channels
        num_chans = x.shape[1]
298

299
300
301
302
        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)

Boris Bonev's avatar
Boris Bonev committed
303
304
305
306
307
308
309
        if x.is_cuda and _cuda_extension_available:
            x = _disco_s2_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
        else:
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
310

Boris Bonev's avatar
Boris Bonev committed
311
            psi = self.get_psi()
312
313
314

            x = _disco_s2_contraction_torch(x, psi, self.nlon_out)

Thorsten Kurth's avatar
Thorsten Kurth committed
315
        # perform reduce scatter in polar region
316
        x = reduce_from_polar_region(x)
317
        x = scatter_to_polar_region(x, -2)
318
319
320
321
322
323
324
325
326
327
328
329

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            x = distributed_transpose_azimuth.apply(x, (-1, 1), chan_shapes)

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
        out = torch.einsum("bgckxy,gock->bgoxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
330
        out = out.reshape(out.shape[0], -1, H, W)
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DistributedDiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
    """
    Discrete-continuous transpose convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
352
        basis_type: Optional[str] = "piecewise linear",
353
        basis_norm_mode: Optional[str] = "mean",
354
355
356
357
358
359
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
360
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # bandlimit
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
379
            theta_cutoff = torch.pi / float(self.nlat_in - 1)
380
381
382
383
384
385

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
Boris Bonev's avatar
Boris Bonev committed
386
        # of atomic reduction calls inside the actual kernel
387
388

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
389
390
        self.nlat_in_local = self.nlat_in
        self.nlat_out_local = self.lat_out_shapes[self.comm_rank_polar]
391
392
393

        # switch in_shape and out_shape since we want transpose conv
        # distributed mode here is swapped because of the transpose
Boris Bonev's avatar
Boris Bonev committed
394
        idx, vals = _precompute_distributed_convolution_tensor_s2(
395
396
397
398
399
400
401
402
403
            out_shape,
            in_shape,
            self.filter_basis,
            grid_in=grid_out,
            grid_out=grid_in,
            theta_cutoff=theta_cutoff,
            transpose_normalization=True,
            basis_norm_mode=basis_norm_mode,
            merge_quadrature=True,
Boris Bonev's avatar
Boris Bonev committed
404
        )
405

Boris Bonev's avatar
Boris Bonev committed
406
407
408
409
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
410
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
411

412
413
414
415
416
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_in_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

417
        # save all datastructures
Boris Bonev's avatar
Boris Bonev committed
418
419
420
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
421
422
        self.register_buffer("psi_vals", vals, persistent=False)

423
424
425
426
    def extra_repr(self):
        r"""
        Pretty print module
        """
427
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
428

Boris Bonev's avatar
Boris Bonev committed
429
430
431
432
433
434
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

    def get_psi(self, semi_transposed: bool = False):
        if semi_transposed:
435
436
437
438
439
440
441
            # do partial transpose
            # we do a semi-transposition to faciliate the computation
            tout = self.psi_idx[2] // self.nlon_out
            pout = self.psi_idx[2] % self.nlon_out
            # flip the axis of longitudes
            pout = self.nlon_out - 1 - pout
            tin = self.psi_idx[1]
Boris Bonev's avatar
Boris Bonev committed
442
            idx = torch.stack([self.psi_idx[0], tout, tin * self.nlon_out + pout], dim=0)
443
444
445
446
            psi = torch.sparse_coo_tensor(idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_out)).coalesce()
        else:
            psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_in_local, self.nlat_out_local * self.nlon_out)).coalesce()
        return psi
Boris Bonev's avatar
Boris Bonev committed
447
448
449

    def forward(self, x: torch.Tensor) -> torch.Tensor:

450
451
452
453
454
455
        # extract shape
        B, C, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
        x = torch.einsum("bgcxy,gock->bgokxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
456
        x = x.reshape(B, -1, x.shape[-3], H, W)
457
        num_chans = x.shape[1]
Boris Bonev's avatar
Boris Bonev committed
458

459
460
461
        # transpose such that lon is local, channels are split
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)
Boris Bonev's avatar
Boris Bonev committed
462

Thorsten Kurth's avatar
Thorsten Kurth committed
463
        # gather input tensor and set up backward reduction hooks
464
465
        x = gather_from_polar_region(x, -2, self.lat_in_shapes)
        x = copy_to_polar_region(x)
Boris Bonev's avatar
Boris Bonev committed
466
467
468
469
470

        if x.is_cuda and _cuda_extension_available:
            out = _disco_s2_transpose_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
471
        else:
Boris Bonev's avatar
Boris Bonev committed
472
473
474
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
            psi = self.get_psi(semi_transposed=True)
475
476
477
478
479
480
481
482
483
484
485
            out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            out = distributed_transpose_azimuth.apply(out, (-1, 1), chan_shapes)

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out