distributed_convolution.py 19.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import abc
from typing import List, Tuple, Union, Optional

import math

import torch
import torch.nn as nn

from functools import partial

from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes
from torch_harmonics._disco_convolution import (
    _disco_s2_contraction_torch,
    _disco_s2_transpose_contraction_torch,
    _disco_s2_contraction_triton,
    _disco_s2_transpose_contraction_triton,
)

from torch_harmonics.convolution import (
    _compute_support_vals_isotropic,
    _compute_support_vals_anisotropic,
    _precompute_convolution_tensor_2d,
    DiscreteContinuousConv,
)

from torch_harmonics.distributed import polar_group_size, azimuth_group_size
from torch_harmonics.distributed import distributed_transpose_azimuth, distributed_transpose_polar
from torch_harmonics.distributed import reduce_from_polar_region, scatter_to_polar_region
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim

def _precompute_distributed_convolution_tensor_s2(in_shape, out_shape, kernel_shape, grid_in="equiangular", grid_out="equiangular",
                                                  theta_cutoff=0.01 * math.pi, distributed_mode="columns"):
    """
    Precomputes the rotated filters at positions $R^{-1}_j \omega_i = R^{-1}_j R_i \nu = Y(-\theta_j)Z(\phi_i - \phi_j)Y(\theta_j)\nu$.
    Assumes a tensorized grid on the sphere with an equidistant sampling in longitude as described in Ocampo et al.
    The output tensor has shape kernel_shape x nlat_out x (nlat_in * nlon_in).

    The rotation of the Euler angles uses the YZY convention, which applied to the northpole $(0,0,1)^T$ yields
    $$
    Y(\alpha) Z(\beta) Y(\gamma) n =
        {\begin{bmatrix} 
            \cos(\gamma)\sin(\alpha) + \cos(\alpha)\cos(\beta)\sin(\gamma) \\
            \sin(\beta)\sin(\gamma) \\
            \cos(\alpha)\cos(\gamma)-\cos(\beta)\sin(\alpha)\sin(\gamma)
        \end{bmatrix}}
    $$

    This is the distributed version: the matrix can either be split column- or row-wise. Column-wise seems better because the kernel has a lot of summation
    atomics concerning the row reductions, which we can combine in a single allreduce.
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

    if len(kernel_shape) == 1:
        kernel_handle = partial(_compute_support_vals_isotropic, nr=kernel_shape[0], r_cutoff=theta_cutoff, norm="s2")
    elif len(kernel_shape) == 2:
        kernel_handle = partial(_compute_support_vals_anisotropic, nr=kernel_shape[0], nphi=kernel_shape[1], r_cutoff=theta_cutoff, norm="s2")
    else:
        raise ValueError("kernel_shape should be either one- or two-dimensional.")

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

    lats_in, _ = _precompute_latitudes(nlat_in, grid=grid_in)
    lats_in = torch.from_numpy(lats_in).float()
    lats_out, _ = _precompute_latitudes(nlat_out, grid=grid_out)
    lats_out = torch.from_numpy(lats_out).float()

    # split the latitude vector:
    comm_size_polar = polar_group_size()
    comm_rank_polar = polar_group_rank()
    if distributed_mode == "columns":
        lats_in = split_tensor_along_dim(lats_in, dim=0, num_chunks=comm_size_polar)[comm_rank_polar]
    elif distributed_mode == "rows":
        lats_out = split_tensor_along_dim(lats_out, dim=0, num_chunks=comm_size_polar)[comm_rank_polar]
        nlat_out = lats_out.shape[0]
    else:
        raise NotImplementedError(f"Error, unknown distributed mode {distributed_mode}.")

    # compute the phi differences
    # It's imporatant to not include the 2 pi point in the longitudes, as it is equivalent to lon=0
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]
    
    out_idx = []
    out_vals = []
    for t in range(nlat_out):
        # the last angle has a negative sign as it is a passive rotation, which rotates the filter around the y-axis
        alpha = -lats_out[t]
        beta = lons_in
        gamma = lats_in.reshape(-1, 1)

        # compute cartesian coordinates of the rotated position
        # This uses the YZY convention of Euler angles, where the last angle (alpha) is a passive rotation,
        # and therefore applied with a negative sign
        z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)
        x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
        y = torch.sin(beta) * torch.sin(gamma)

        # normalization is emportant to avoid NaNs when arccos and atan are applied
        # this can otherwise lead to spurious artifacts in the solution
        norm = torch.sqrt(x * x + y * y + z * z)
        x = x / norm
        y = y / norm
        z = z / norm

        # compute spherical coordinates, where phi needs to fall into the [0, 2pi) range
        theta = torch.arccos(z)
        phi = torch.arctan2(y, x) + torch.pi

        # find the indices where the rotated position falls into the support of the kernel
        iidx, vals = kernel_handle(theta, phi)

        # add the output latitude and reshape such that psi has dimensions kernel_shape x nlat_out x (nlat_in*nlon_in)
        idx = torch.stack([iidx[:, 0], t * torch.ones_like(iidx[:, 0]), iidx[:, 1] * nlon_in + iidx[:, 2]], dim=0)

        # append indices and values to the COO datastructure
        out_idx.append(idx)
        out_vals.append(vals)

    # concatenate the indices and values
    out_idx = torch.cat(out_idx, dim=-1)
    out_vals = torch.cat(out_vals, dim=-1)

    return out_idx, out_vals

class DistributedDiscreteContinuousConvS2(DiscreteContinuousConv):
    """
    Distributed version of Discrete-continuous convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603

    We assume the data can be splitted in polar and azimuthal directions.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # compute theta cutoff based on the bandlimit of the input field
        if theta_cutoff is None:
            theta_cutoff = (self.kernel_shape[0] + 1) * torch.pi / float(self.nlat_in - 1)

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # integration weights
        _, wgl = _precompute_latitudes(self.nlat_in, grid=grid_in)
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wgl).float().reshape(-1, 1) / float(self.nlon_in)
        
        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
        # of atomic reduction calls inside the actual kernel
        distributed_mode = "columns"

        # set local shapes according to distributed mode:
        if distributed_mode == "columns":
            self.nlat_in_local = self.lat_in_shapes[self.comm_rank_polar]
            self.nlat_out_local = self.nlat_out
        elif distributed_mode == "rows":
            self.nlat_in_local = self.nlat_in
            self.nlat_out_local = self.lat_out_shapes[self.comm_rank_polar]
        else:
            raise NotImplementedError(f"Error, unknown distributed mode {distributed_mode}.")
        
        idx, vals = _precompute_distributed_convolution_tensor_s2(in_shape, out_shape, self.kernel_shape, grid_in=grid_in, grid_out=grid_out,
                                                                  theta_cutoff=theta_cutoff, distributed_mode=distributed_mode)
        # split the weight tensor as well
        if distributed_mode == "columns":
            quad_weights = split_tensor_along_dim(quad_weights, dim=0, num_chunks=self.comm_size_polar)[self.comm_rank_polar]

        self.register_buffer("quad_weights", quad_weights, persistent=False)
        self.register_buffer("psi_idx", idx, persistent=False)
        self.register_buffer("psi_vals", vals, persistent=False)

    def get_psi(self):
        psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_in)).coalesce()
        return psi

    def forward(self, x: torch.Tensor, use_triton_kernel: bool = True) -> torch.Tensor:

        # store number of channels
        num_chans = x.shape[1]
        #print("input shape", x.shape)
        
        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)

        #print("transposed shape", x.shape)
            
        # pre-multiply x with the quadrature weights
        x = self.quad_weights * x

        #print("multiplied shape", x.shape)

        psi = self.get_psi()

        #print("psi shape", psi.shape)

        if x.is_cuda and use_triton_kernel:
            x = _disco_s2_contraction_triton(x, psi, self.nlon_out)
        else:
            x = _disco_s2_contraction_torch(x, psi, self.nlon_out)

        #print("psi * x shape", x.shape)

        # allreduce over latitudes: h is still local
        x = reduce_from_polar_region(x)

        #print("reduced shape", x.shape)

        # split tensor along latitudes: h is split
        x = scatter_to_polar_region(x, -2)

        #print("scattered shape", x.shape)

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            x = distributed_transpose_azimuth.apply(x, (-1, 1), chan_shapes)

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
        out = torch.einsum("bgckxy,gock->bgoxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
        out = out.reshape(out.shape[0], -1, out.shape[-2], out.shape[-1])

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DistributedDiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
    """
    Discrete-continuous transpose convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # bandlimit
        if theta_cutoff is None:
            theta_cutoff = (self.kernel_shape[0] + 1) * torch.pi / float(self.nlat_in - 1)

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # integration weights
        _, wgl = _precompute_latitudes(self.nlat_in, grid=grid_in)
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wgl).float().reshape(-1, 1) / self.nlon_in

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
	# of atomic reduction calls inside the actual kernel
        distributed_mode = "columns"

        # set local shapes according to distributed mode:
        if distributed_mode == "columns":
            self.nlat_in_local = self.lat_in_shapes[self.comm_rank_polar]
            self.nlat_out_local = self.nlat_out
        elif distributed_mode == "rows":
            self.nlat_in_local = self.nlat_in
            self.nlat_out_local = self.lat_out_shapes[self.comm_rank_polar]
        else:
            raise NotImplementedError(f"Error, unknown distributed mode {distributed_mode}.")

        # switch in_shape and out_shape since we want transpose conv
        # distributed mode here is swapped because of the transpose
        idx, vals = _precompute_distributed_convolution_tensor_s2(out_shape, in_shape, self.kernel_shape, grid_in=grid_out, grid_out=grid_in,
                                                                  theta_cutoff=theta_cutoff, distributed_mode="rows" if distributed_mode else "columns")

        ## do partial transpose
        ## we do a semi-transposition to faciliate the computation
        #tout = iidx[2] // self.nlon_out
        #pout = iidx[2] % self.nlon_out
        ## flip the axis of longitudes
        #pout = self.nlon_out - 1 - pout
        #tin = iidx[1]
        #idx = torch.stack([iidx[0], tout, tin*self.nlon_out + pout], dim=0)
        
        # split the weight tensor as well
        if distributed_mode == "columns":
            quad_weights = split_tensor_along_dim(quad_weights, dim=0, num_chunks=self.comm_size_polar)[self.comm_rank_polar]

        # register all buffers
        self.register_buffer("quad_weights", quad_weights, persistent=False)
        self.register_buffer("psi_idx", idx, persistent=False)
        self.register_buffer("psi_vals", vals, persistent=False)

    def get_psi(self, use_triton_kernel=True):
        if not use_triton_kernel:
            # do partial transpose
            # we do a semi-transposition to faciliate the computation
            tout = self.psi_idx[2] // self.nlon_out
            pout = self.psi_idx[2] % self.nlon_out
            # flip the axis of longitudes
            pout = self.nlon_out - 1 - pout
            tin = self.psi_idx[1]
            idx = torch.stack([self.psi_idx[0], tout, tin*self.nlon_out + pout], dim=0)
            psi = torch.sparse_coo_tensor(idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_out)).coalesce()
        else:
            psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_in_local, self.nlat_out_local * self.nlon_out)).coalesce()
        return psi
    
    def forward(self, x: torch.Tensor, use_triton_kernel: bool = True) -> torch.Tensor:
        # extract shape
        B, C, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
        x = torch.einsum("bgcxy,gock->bgokxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
        x = x.reshape(x.shape[0], -1, x.shape[-3], x.shape[-2], x.shape[-1])
        num_chans = x.shape[1]
        
        # transpose such that lon is local, channels are split
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)
        
        # pre-multiply x with the quadrature weights
        x = self.quad_weights * x
        
        if x.is_cuda and use_triton_kernel:
            psi = self.get_psi(True)
            out = _disco_s2_transpose_contraction_triton(x, psi, self.nlon_out)
        else:
            psi = self.get_psi(False)
            out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)
            
        # allreduce over latitudes: h is still local
        out = reduce_from_polar_region(out)

        # split tensor along latitudes: h is split
        out = scatter_to_polar_region(out, -2)

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            out = distributed_transpose_azimuth.apply(out, (-1, 1), chan_shapes)

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out