distributed_convolution.py 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import abc
from typing import List, Tuple, Union, Optional
Boris Bonev's avatar
Boris Bonev committed
34
35
from itertools import accumulate
from warnings import warn
36
37
38
39
40
41
42
43
44

import math

import torch
import torch.nn as nn

from functools import partial

from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes
Boris Bonev's avatar
Boris Bonev committed
45
46
from torch_harmonics._disco_convolution import _disco_s2_contraction_torch, _disco_s2_transpose_contraction_torch
from torch_harmonics._disco_convolution import _disco_s2_contraction_cuda, _disco_s2_transpose_contraction_cuda
47
48
49
50

from torch_harmonics.convolution import (
    _compute_support_vals_isotropic,
    _compute_support_vals_anisotropic,
Boris Bonev's avatar
Boris Bonev committed
51
    _normalize_convolution_tensor_s2,
52
53
54
55
56
    DiscreteContinuousConv,
)

from torch_harmonics.distributed import polar_group_size, azimuth_group_size
from torch_harmonics.distributed import distributed_transpose_azimuth, distributed_transpose_polar
Boris Bonev's avatar
Boris Bonev committed
57
from torch_harmonics.distributed import copy_to_polar_region, reduce_from_polar_region, scatter_to_polar_region, gather_from_polar_region
58
59
60
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim

Boris Bonev's avatar
Boris Bonev committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# import custom C++/CUDA extensions
from disco_helpers import preprocess_psi

try:
    import disco_cuda_extension

    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False


def _precompute_distributed_convolution_tensor_s2(
    in_shape, out_shape, kernel_shape, grid_in="equiangular", grid_out="equiangular", theta_cutoff=0.01 * math.pi, transpose_normalization=False
):
76
77
78
79
80
81
82
83
    """
    Precomputes the rotated filters at positions $R^{-1}_j \omega_i = R^{-1}_j R_i \nu = Y(-\theta_j)Z(\phi_i - \phi_j)Y(\theta_j)\nu$.
    Assumes a tensorized grid on the sphere with an equidistant sampling in longitude as described in Ocampo et al.
    The output tensor has shape kernel_shape x nlat_out x (nlat_in * nlon_in).

    The rotation of the Euler angles uses the YZY convention, which applied to the northpole $(0,0,1)^T$ yields
    $$
    Y(\alpha) Z(\beta) Y(\gamma) n =
Boris Bonev's avatar
Boris Bonev committed
84
        {\begin{bmatrix}
85
86
87
88
89
90
91
92
93
94
95
            \cos(\gamma)\sin(\alpha) + \cos(\alpha)\cos(\beta)\sin(\gamma) \\
            \sin(\beta)\sin(\gamma) \\
            \cos(\alpha)\cos(\gamma)-\cos(\beta)\sin(\alpha)\sin(\gamma)
        \end{bmatrix}}
    $$
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

    if len(kernel_shape) == 1:
Boris Bonev's avatar
Boris Bonev committed
96
        kernel_handle = partial(_compute_support_vals_isotropic, nr=kernel_shape[0], r_cutoff=theta_cutoff)
97
    elif len(kernel_shape) == 2:
Boris Bonev's avatar
Boris Bonev committed
98
        kernel_handle = partial(_compute_support_vals_anisotropic, nr=kernel_shape[0], nphi=kernel_shape[1], r_cutoff=theta_cutoff)
99
100
101
102
103
104
    else:
        raise ValueError("kernel_shape should be either one- or two-dimensional.")

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

Boris Bonev's avatar
Boris Bonev committed
105
    lats_in, win = _precompute_latitudes(nlat_in, grid=grid_in)
106
    lats_in = torch.from_numpy(lats_in).float()
Boris Bonev's avatar
Boris Bonev committed
107
    lats_out, wout = _precompute_latitudes(nlat_out, grid=grid_out)
108
109
110
111
112
    lats_out = torch.from_numpy(lats_out).float()

    # compute the phi differences
    # It's imporatant to not include the 2 pi point in the longitudes, as it is equivalent to lon=0
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]
Boris Bonev's avatar
Boris Bonev committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    out_idx = []
    out_vals = []
    for t in range(nlat_out):
        # the last angle has a negative sign as it is a passive rotation, which rotates the filter around the y-axis
        alpha = -lats_out[t]
        beta = lons_in
        gamma = lats_in.reshape(-1, 1)

        # compute cartesian coordinates of the rotated position
        # This uses the YZY convention of Euler angles, where the last angle (alpha) is a passive rotation,
        # and therefore applied with a negative sign
        z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)
        x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
        y = torch.sin(beta) * torch.sin(gamma)

        # normalization is emportant to avoid NaNs when arccos and atan are applied
        # this can otherwise lead to spurious artifacts in the solution
        norm = torch.sqrt(x * x + y * y + z * z)
        x = x / norm
        y = y / norm
        z = z / norm

        # compute spherical coordinates, where phi needs to fall into the [0, 2pi) range
        theta = torch.arccos(z)
        phi = torch.arctan2(y, x) + torch.pi

        # find the indices where the rotated position falls into the support of the kernel
        iidx, vals = kernel_handle(theta, phi)

        # add the output latitude and reshape such that psi has dimensions kernel_shape x nlat_out x (nlat_in*nlon_in)
        idx = torch.stack([iidx[:, 0], t * torch.ones_like(iidx[:, 0]), iidx[:, 1] * nlon_in + iidx[:, 2]], dim=0)

        # append indices and values to the COO datastructure
        out_idx.append(idx)
        out_vals.append(vals)

    # concatenate the indices and values
Boris Bonev's avatar
Boris Bonev committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    out_idx = torch.cat(out_idx, dim=-1).to(torch.long).contiguous()
    out_vals = torch.cat(out_vals, dim=-1).to(torch.float32).contiguous()

    # perform the normalization over the entire psi matrix
    if transpose_normalization:
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wout).float().reshape(-1, 1) / nlon_in
    else:
        quad_weights = 2.0 * torch.pi * torch.from_numpy(win).float().reshape(-1, 1) / nlon_in
    out_vals = _normalize_convolution_tensor_s2(out_idx, out_vals, in_shape, out_shape, kernel_shape, quad_weights, transpose_normalization=transpose_normalization)

    # TODO: this part can be split off into it's own function
    # split the latitude indices:
    comm_size_polar = polar_group_size()
    comm_rank_polar = polar_group_rank()
    split_shapes = compute_split_shapes(nlat_in, num_chunks=comm_size_polar)
    offsets = [0] + list(accumulate(split_shapes))
    start_idx = offsets[comm_rank_polar]
    end_idx = offsets[comm_rank_polar+1]

    # once normalization is done we can throw away the entries which correspond to input latitudes we do not care about
    lats = out_idx[2] // nlon_in
    lons = out_idx[2] % nlon_in
    ilats = torch.argwhere((lats < end_idx) & (lats >= start_idx)).squeeze()
    out_vals = out_vals[ilats]
    # for the indices we need to recompute them to refer to local indices of the input tenor
    out_idx = torch.stack([out_idx[0, ilats], out_idx[1, ilats], (lats[ilats]-start_idx) * nlon_in + lons[ilats]], dim=0)
177
178
179

    return out_idx, out_vals

Boris Bonev's avatar
Boris Bonev committed
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
class DistributedDiscreteContinuousConvS2(DiscreteContinuousConv):
    """
    Distributed version of Discrete-continuous convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603

    We assume the data can be splitted in polar and azimuthal directions.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # compute theta cutoff based on the bandlimit of the input field
        if theta_cutoff is None:
Boris Bonev's avatar
Boris Bonev committed
222
            theta_cutoff = (self.kernel_shape[0] + 1) / 2 * torch.pi / float(self.nlat_out - 1)
223
224
225
226
227
228
229

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # integration weights
        _, wgl = _precompute_latitudes(self.nlat_in, grid=grid_in)
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wgl).float().reshape(-1, 1) / float(self.nlon_in)
Boris Bonev's avatar
Boris Bonev committed
230

231
232
233
234
235
        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
        # of atomic reduction calls inside the actual kernel

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
236
237
238
239
240
        self.nlat_in_local = self.lat_in_shapes[self.comm_rank_polar]
        self.nlat_out_local = self.nlat_out
        idx, vals = _precompute_distributed_convolution_tensor_s2(
            in_shape, out_shape, self.kernel_shape, grid_in=grid_in, grid_out=grid_out, theta_cutoff=theta_cutoff, transpose_normalization=False
        )
241

Boris Bonev's avatar
Boris Bonev committed
242
243
        # split the weight tensor as well
        quad_weights = split_tensor_along_dim(quad_weights, dim=0, num_chunks=self.comm_size_polar)[self.comm_rank_polar]
244
        self.register_buffer("quad_weights", quad_weights, persistent=False)
Boris Bonev's avatar
Boris Bonev committed
245
246
247
248
249
250
251
252
253
254
255
256

        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
        roff_idx = preprocess_psi(self.kernel_size, self.nlat_out_local, ker_idx, row_idx, col_idx, vals)

        # preprocessed data-structure for GPU kernel
        self.register_buffer("psi_roff_idx", roff_idx, persistent=False)
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
257
258
        self.register_buffer("psi_vals", vals, persistent=False)

Boris Bonev's avatar
Boris Bonev committed
259
260
261
262
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

263
264
265
266
    def get_psi(self):
        psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_in)).coalesce()
        return psi

Boris Bonev's avatar
Boris Bonev committed
267
    def forward(self, x: torch.Tensor) -> torch.Tensor:
268
269
270

        # store number of channels
        num_chans = x.shape[1]
Boris Bonev's avatar
Boris Bonev committed
271

272
273
274
275
276
277
278
        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)

        # pre-multiply x with the quadrature weights
        x = self.quad_weights * x

Boris Bonev's avatar
Boris Bonev committed
279
280
281
282
283
284
285
        if x.is_cuda and _cuda_extension_available:
            x = _disco_s2_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
        else:
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
286

Boris Bonev's avatar
Boris Bonev committed
287
            psi = self.get_psi()
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

            x = _disco_s2_contraction_torch(x, psi, self.nlon_out)

        # allreduce over latitudes: h is still local
        x = reduce_from_polar_region(x)

        # split tensor along latitudes: h is split
        x = scatter_to_polar_region(x, -2)

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            x = distributed_transpose_azimuth.apply(x, (-1, 1), chan_shapes)

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
        out = torch.einsum("bgckxy,gock->bgoxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
308
        out = out.reshape(out.shape[0], -1, H, W)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DistributedDiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
    """
    Discrete-continuous transpose convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # bandlimit
        if theta_cutoff is None:
Boris Bonev's avatar
Boris Bonev committed
355
            theta_cutoff = (self.kernel_shape[0] + 1) / 2 * torch.pi / float(self.nlat_in - 1)
356
357
358
359
360
361
362
363
364
365

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # integration weights
        _, wgl = _precompute_latitudes(self.nlat_in, grid=grid_in)
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wgl).float().reshape(-1, 1) / self.nlon_in

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
Boris Bonev's avatar
Boris Bonev committed
366
        # of atomic reduction calls inside the actual kernel
367
368

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
369
370
        self.nlat_in_local = self.nlat_in
        self.nlat_out_local = self.lat_out_shapes[self.comm_rank_polar]
371
372
373

        # switch in_shape and out_shape since we want transpose conv
        # distributed mode here is swapped because of the transpose
Boris Bonev's avatar
Boris Bonev committed
374
375
376
        idx, vals = _precompute_distributed_convolution_tensor_s2(
            out_shape, in_shape, self.kernel_shape, grid_in=grid_out, grid_out=grid_in, theta_cutoff=theta_cutoff, transpose_normalization=True
        )
377

Boris Bonev's avatar
Boris Bonev committed
378
379
        # split the weight tensor as well
        quad_weights = split_tensor_along_dim(quad_weights, dim=0, num_chunks=self.comm_size_polar)[self.comm_rank_polar]
380
        self.register_buffer("quad_weights", quad_weights, persistent=False)
Boris Bonev's avatar
Boris Bonev committed
381
382
383
384
385
386
387
388
389
390
391
392

        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
        roff_idx = preprocess_psi(self.kernel_size, self.nlat_in_local, ker_idx, row_idx, col_idx, vals)

        # preprocessed data-structure for GPU kernel
        self.register_buffer("psi_roff_idx", roff_idx, persistent=False)
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
393
394
        self.register_buffer("psi_vals", vals, persistent=False)

Boris Bonev's avatar
Boris Bonev committed
395
396
397
398
399
400
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

    def get_psi(self, semi_transposed: bool = False):
        if semi_transposed:
401
402
403
404
405
406
407
            # do partial transpose
            # we do a semi-transposition to faciliate the computation
            tout = self.psi_idx[2] // self.nlon_out
            pout = self.psi_idx[2] % self.nlon_out
            # flip the axis of longitudes
            pout = self.nlon_out - 1 - pout
            tin = self.psi_idx[1]
Boris Bonev's avatar
Boris Bonev committed
408
            idx = torch.stack([self.psi_idx[0], tout, tin * self.nlon_out + pout], dim=0)
409
410
411
412
            psi = torch.sparse_coo_tensor(idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_out)).coalesce()
        else:
            psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_in_local, self.nlat_out_local * self.nlon_out)).coalesce()
        return psi
Boris Bonev's avatar
Boris Bonev committed
413
414
415

    def forward(self, x: torch.Tensor) -> torch.Tensor:

416
417
418
419
420
421
        # extract shape
        B, C, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
        x = torch.einsum("bgcxy,gock->bgokxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
422
        x = x.reshape(B, -1, x.shape[-3], H, W)
423
        num_chans = x.shape[1]
Boris Bonev's avatar
Boris Bonev committed
424

425
426
427
        # transpose such that lon is local, channels are split
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)
Boris Bonev's avatar
Boris Bonev committed
428
429

        # multiply weights
430
        x = self.quad_weights * x
Boris Bonev's avatar
Boris Bonev committed
431
432
433
434
435
436
437
438
439
440
441

        # we need to gather the input tensor
        x = gather_from_polar_region(x, -2, self.lat_in_shapes)

        # register allreduce for bwd pass
        x = copy_to_polar_region(x)

        if x.is_cuda and _cuda_extension_available:
            out = _disco_s2_transpose_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
442
        else:
Boris Bonev's avatar
Boris Bonev committed
443
444
445
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
            psi = self.get_psi(semi_transposed=True)
446
447
448
449
450
451
452
453
454
455
456
            out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            out = distributed_transpose_azimuth.apply(out, (-1, 1), chan_shapes)

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out