distributed_convolution.py 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import abc
from typing import List, Tuple, Union, Optional
Boris Bonev's avatar
Boris Bonev committed
34
35
from itertools import accumulate
from warnings import warn
36
37
38
39
40
41
42
43
44

import math

import torch
import torch.nn as nn

from functools import partial

from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes
Boris Bonev's avatar
Boris Bonev committed
45
46
from torch_harmonics._disco_convolution import _disco_s2_contraction_torch, _disco_s2_transpose_contraction_torch
from torch_harmonics._disco_convolution import _disco_s2_contraction_cuda, _disco_s2_transpose_contraction_cuda
47
from torch_harmonics.filter_basis import get_filter_basis
48
from torch_harmonics.convolution import (
Boris Bonev's avatar
Boris Bonev committed
49
    _normalize_convolution_tensor_s2,
50
51
52
    DiscreteContinuousConv,
)

53

54
55
from torch_harmonics.distributed import polar_group_size, azimuth_group_size
from torch_harmonics.distributed import distributed_transpose_azimuth, distributed_transpose_polar
56
from torch_harmonics.distributed import reduce_from_polar_region, scatter_to_polar_region, gather_from_polar_region, copy_to_polar_region
57
58
59
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim

60
# import custom C++/CUDA extensions if available
Boris Bonev's avatar
Boris Bonev committed
61
try:
62
    from disco_helpers import preprocess_psi
Boris Bonev's avatar
Boris Bonev committed
63
    import disco_cuda_extension
64

Boris Bonev's avatar
Boris Bonev committed
65
66
67
68
69
70
71
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False


def _precompute_distributed_convolution_tensor_s2(
72
73
    in_shape,
    out_shape,
74
    filter_basis,
75
76
77
78
79
    grid_in="equiangular",
    grid_out="equiangular",
    theta_cutoff=0.01 * math.pi,
    transpose_normalization=False,
    merge_quadrature=False,
Boris Bonev's avatar
Boris Bonev committed
80
):
81
82
83
84
85
86
87
88
    """
    Precomputes the rotated filters at positions $R^{-1}_j \omega_i = R^{-1}_j R_i \nu = Y(-\theta_j)Z(\phi_i - \phi_j)Y(\theta_j)\nu$.
    Assumes a tensorized grid on the sphere with an equidistant sampling in longitude as described in Ocampo et al.
    The output tensor has shape kernel_shape x nlat_out x (nlat_in * nlon_in).

    The rotation of the Euler angles uses the YZY convention, which applied to the northpole $(0,0,1)^T$ yields
    $$
    Y(\alpha) Z(\beta) Y(\gamma) n =
Boris Bonev's avatar
Boris Bonev committed
89
        {\begin{bmatrix}
90
91
92
93
94
95
96
97
98
99
            \cos(\gamma)\sin(\alpha) + \cos(\alpha)\cos(\beta)\sin(\gamma) \\
            \sin(\beta)\sin(\gamma) \\
            \cos(\alpha)\cos(\gamma)-\cos(\beta)\sin(\alpha)\sin(\gamma)
        \end{bmatrix}}
    $$
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

100
    kernel_size = filter_basis.kernel_size
101
102
103
104

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

Boris Bonev's avatar
Boris Bonev committed
105
    lats_in, win = _precompute_latitudes(nlat_in, grid=grid_in)
106
    lats_in = torch.from_numpy(lats_in).float()
Boris Bonev's avatar
Boris Bonev committed
107
    lats_out, wout = _precompute_latitudes(nlat_out, grid=grid_out)
108
109
110
111
112
    lats_out = torch.from_numpy(lats_out).float()

    # compute the phi differences
    # It's imporatant to not include the 2 pi point in the longitudes, as it is equivalent to lon=0
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]
Boris Bonev's avatar
Boris Bonev committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    out_idx = []
    out_vals = []
    for t in range(nlat_out):
        # the last angle has a negative sign as it is a passive rotation, which rotates the filter around the y-axis
        alpha = -lats_out[t]
        beta = lons_in
        gamma = lats_in.reshape(-1, 1)

        # compute cartesian coordinates of the rotated position
        # This uses the YZY convention of Euler angles, where the last angle (alpha) is a passive rotation,
        # and therefore applied with a negative sign
        z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)
        x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
        y = torch.sin(beta) * torch.sin(gamma)

        # normalization is emportant to avoid NaNs when arccos and atan are applied
        # this can otherwise lead to spurious artifacts in the solution
        norm = torch.sqrt(x * x + y * y + z * z)
        x = x / norm
        y = y / norm
        z = z / norm

        # compute spherical coordinates, where phi needs to fall into the [0, 2pi) range
        theta = torch.arccos(z)
        phi = torch.arctan2(y, x) + torch.pi

        # find the indices where the rotated position falls into the support of the kernel
141
        iidx, vals = filter_basis.compute_support_vals(theta, phi, r_cutoff=theta_cutoff)
142
143
144
145
146
147
148
149
150

        # add the output latitude and reshape such that psi has dimensions kernel_shape x nlat_out x (nlat_in*nlon_in)
        idx = torch.stack([iidx[:, 0], t * torch.ones_like(iidx[:, 0]), iidx[:, 1] * nlon_in + iidx[:, 2]], dim=0)

        # append indices and values to the COO datastructure
        out_idx.append(idx)
        out_vals.append(vals)

    # concatenate the indices and values
Boris Bonev's avatar
Boris Bonev committed
151
152
153
154
155
156
157
158
    out_idx = torch.cat(out_idx, dim=-1).to(torch.long).contiguous()
    out_vals = torch.cat(out_vals, dim=-1).to(torch.float32).contiguous()

    # perform the normalization over the entire psi matrix
    if transpose_normalization:
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wout).float().reshape(-1, 1) / nlon_in
    else:
        quad_weights = 2.0 * torch.pi * torch.from_numpy(win).float().reshape(-1, 1) / nlon_in
159
160
161
    out_vals = _normalize_convolution_tensor_s2(
        out_idx, out_vals, in_shape, out_shape, kernel_size, quad_weights, transpose_normalization=transpose_normalization, merge_quadrature=merge_quadrature
    )
Boris Bonev's avatar
Boris Bonev committed
162
163
164
165
166
167
168
169

    # TODO: this part can be split off into it's own function
    # split the latitude indices:
    comm_size_polar = polar_group_size()
    comm_rank_polar = polar_group_rank()
    split_shapes = compute_split_shapes(nlat_in, num_chunks=comm_size_polar)
    offsets = [0] + list(accumulate(split_shapes))
    start_idx = offsets[comm_rank_polar]
170
    end_idx = offsets[comm_rank_polar + 1]
Boris Bonev's avatar
Boris Bonev committed
171
172
173
174
175
176
177

    # once normalization is done we can throw away the entries which correspond to input latitudes we do not care about
    lats = out_idx[2] // nlon_in
    lons = out_idx[2] % nlon_in
    ilats = torch.argwhere((lats < end_idx) & (lats >= start_idx)).squeeze()
    out_vals = out_vals[ilats]
    # for the indices we need to recompute them to refer to local indices of the input tenor
178
    out_idx = torch.stack([out_idx[0, ilats], out_idx[1, ilats], (lats[ilats] - start_idx) * nlon_in + lons[ilats]], dim=0)
179
180
181

    return out_idx, out_vals

Boris Bonev's avatar
Boris Bonev committed
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
class DistributedDiscreteContinuousConvS2(DiscreteContinuousConv):
    """
    Distributed version of Discrete-continuous convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603

    We assume the data can be splitted in polar and azimuthal directions.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
199
        basis_type: Optional[str] = "piecewise linear",
200
201
202
203
204
205
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
206
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # compute theta cutoff based on the bandlimit of the input field
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
225
            theta_cutoff = torch.pi / float(self.nlat_out - 1)
226
227
228
229
230
231
232
233
234

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
        # of atomic reduction calls inside the actual kernel

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
235
236
        self.nlat_in_local = self.lat_in_shapes[self.comm_rank_polar]
        self.nlat_out_local = self.nlat_out
237

Boris Bonev's avatar
Boris Bonev committed
238
        idx, vals = _precompute_distributed_convolution_tensor_s2(
239
            in_shape, out_shape, self.filter_basis, grid_in=grid_in, grid_out=grid_out, theta_cutoff=theta_cutoff, transpose_normalization=False, merge_quadrature=True
Boris Bonev's avatar
Boris Bonev committed
240
        )
241

Boris Bonev's avatar
Boris Bonev committed
242
243
244
245
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
246
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
247

248
249
250
251
252
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_out_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

Boris Bonev's avatar
Boris Bonev committed
253
254
255
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
256
257
        self.register_buffer("psi_vals", vals, persistent=False)

258
259
260
261
    def extra_repr(self):
        r"""
        Pretty print module
        """
262
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
263

Boris Bonev's avatar
Boris Bonev committed
264
265
266
267
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

268
269
270
271
    def get_psi(self):
        psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_in)).coalesce()
        return psi

Boris Bonev's avatar
Boris Bonev committed
272
    def forward(self, x: torch.Tensor) -> torch.Tensor:
273
274
275

        # store number of channels
        num_chans = x.shape[1]
276

277
278
279
280
        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)

Boris Bonev's avatar
Boris Bonev committed
281
282
283
284
285
286
287
        if x.is_cuda and _cuda_extension_available:
            x = _disco_s2_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
        else:
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
288

Boris Bonev's avatar
Boris Bonev committed
289
            psi = self.get_psi()
290
291
292

            x = _disco_s2_contraction_torch(x, psi, self.nlon_out)

Thorsten Kurth's avatar
Thorsten Kurth committed
293
        # perform reduce scatter in polar region
294
        x = reduce_from_polar_region(x)
295
        x = scatter_to_polar_region(x, -2)
296
297
298
299
300
301
302
303
304
305
306
307

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            x = distributed_transpose_azimuth.apply(x, (-1, 1), chan_shapes)

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
        out = torch.einsum("bgckxy,gock->bgoxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
308
        out = out.reshape(out.shape[0], -1, H, W)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DistributedDiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
    """
    Discrete-continuous transpose convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
330
        basis_type: Optional[str] = "piecewise linear",
331
332
333
334
335
336
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
337
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # we need those shapes:
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # bandlimit
        if theta_cutoff is None:
Thorsten Kurth's avatar
Thorsten Kurth committed
356
            theta_cutoff = torch.pi / float(self.nlat_in - 1)
357
358
359
360
361
362

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # Note that the psi matrix is of shape nlat_out x nlat_in * nlon_in. Since the contraction in nlon direction is a convolution,
        # we will keep local to all nodes and split the computation up along nlat. We further split the input dim because this reduces the number
Boris Bonev's avatar
Boris Bonev committed
363
        # of atomic reduction calls inside the actual kernel
364
365

        # set local shapes according to distributed mode:
Boris Bonev's avatar
Boris Bonev committed
366
367
        self.nlat_in_local = self.nlat_in
        self.nlat_out_local = self.lat_out_shapes[self.comm_rank_polar]
368
369
370

        # switch in_shape and out_shape since we want transpose conv
        # distributed mode here is swapped because of the transpose
Boris Bonev's avatar
Boris Bonev committed
371
        idx, vals = _precompute_distributed_convolution_tensor_s2(
372
            out_shape, in_shape, self.filter_basis, grid_in=grid_out, grid_out=grid_in, theta_cutoff=theta_cutoff, transpose_normalization=True, merge_quadrature=True
Boris Bonev's avatar
Boris Bonev committed
373
        )
374

Boris Bonev's avatar
Boris Bonev committed
375
376
377
378
        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
379
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
380

381
382
383
384
385
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, self.nlat_in_local, ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

Boris Bonev's avatar
Boris Bonev committed
386
387
388
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
389
390
        self.register_buffer("psi_vals", vals, persistent=False)

391
392
393
394
    def extra_repr(self):
        r"""
        Pretty print module
        """
395
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
396

Boris Bonev's avatar
Boris Bonev committed
397
398
399
400
401
402
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

    def get_psi(self, semi_transposed: bool = False):
        if semi_transposed:
403
404
405
406
407
408
409
            # do partial transpose
            # we do a semi-transposition to faciliate the computation
            tout = self.psi_idx[2] // self.nlon_out
            pout = self.psi_idx[2] % self.nlon_out
            # flip the axis of longitudes
            pout = self.nlon_out - 1 - pout
            tin = self.psi_idx[1]
Boris Bonev's avatar
Boris Bonev committed
410
            idx = torch.stack([self.psi_idx[0], tout, tin * self.nlon_out + pout], dim=0)
411
412
413
414
            psi = torch.sparse_coo_tensor(idx, self.psi_vals, size=(self.kernel_size, self.nlat_out_local, self.nlat_in_local * self.nlon_out)).coalesce()
        else:
            psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_in_local, self.nlat_out_local * self.nlon_out)).coalesce()
        return psi
Boris Bonev's avatar
Boris Bonev committed
415
416
417

    def forward(self, x: torch.Tensor) -> torch.Tensor:

418
419
420
421
422
423
        # extract shape
        B, C, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
        x = torch.einsum("bgcxy,gock->bgokxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
424
        x = x.reshape(B, -1, x.shape[-3], H, W)
425
        num_chans = x.shape[1]
Boris Bonev's avatar
Boris Bonev committed
426

427
428
429
        # transpose such that lon is local, channels are split
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (1, -1), self.lon_in_shapes)
Boris Bonev's avatar
Boris Bonev committed
430

Thorsten Kurth's avatar
Thorsten Kurth committed
431
        # gather input tensor and set up backward reduction hooks
432
433
        x = gather_from_polar_region(x, -2, self.lat_in_shapes)
        x = copy_to_polar_region(x)
Boris Bonev's avatar
Boris Bonev committed
434
435
436
437
438

        if x.is_cuda and _cuda_extension_available:
            out = _disco_s2_transpose_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out_local, self.nlon_out
            )
439
        else:
Boris Bonev's avatar
Boris Bonev committed
440
441
442
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
            psi = self.get_psi(semi_transposed=True)
443
444
445
446
447
448
449
450
451
452
453
            out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)

        # now we can transpose back the result, so that lon is split and channels are local
        if self.comm_size_azimuth > 1:
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            out = distributed_transpose_azimuth.apply(out, (-1, 1), chan_shapes)

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out