infer.rs 37.1 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
4
5
6
use crate::{
    ChatTemplateInputs, Entry, GenerateRequest, GenerateStreamResponse, HubTokenizerConfig,
    Message, PrefillToken, Queue, Token,
};
7
use futures::future::try_join_all;
8
use minijinja::{Environment, ErrorKind, Template};
9
use nohash_hasher::IntMap;
10
11
12
13
use std::sync::{
    atomic::{AtomicBool, Ordering},
    Arc,
};
14
use text_generation_client::{
Nicolas Patry's avatar
Nicolas Patry committed
15
    Batch, CachedBatch, ClientError, GeneratedText, Generation, ShardedClient, Tokens,
16
17
};
use thiserror::Error;
OlivierDehaene's avatar
OlivierDehaene committed
18
use tokio::sync::mpsc::error::SendError;
19
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
20
use tokio::time::Instant;
OlivierDehaene's avatar
OlivierDehaene committed
21
22
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
23
use tracing::{info_span, instrument, Instrument, Span};
24
25
26
27
28
29

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
30
31
    /// Request queue
    queue: Queue,
32
33
    /// Shared state
    shared: Arc<Shared>,
34
35
    /// Chat template
    chat_template: Option<ChatTemplate>,
36
37
38
39
40
41
42
43
44
45
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

46
47
48
49
50
/// Raise a exception (custom function) used in the chat templates
fn raise_exception(err_text: String) -> Result<String, minijinja::Error> {
    Err(minijinja::Error::new(ErrorKind::SyntaxError, err_text))
}

51
impl Infer {
52
    #[allow(clippy::too_many_arguments)]
53
54
55
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
56
        waiting_served_ratio: f32,
57
        max_batch_prefill_tokens: u32,
58
        max_batch_total_tokens: u32,
59
        max_waiting_tokens: usize,
60
        max_batch_size: Option<usize>,
61
        max_concurrent_requests: usize,
62
        requires_padding: bool,
63
        window_size: Option<u32>,
Nicolas Patry's avatar
Nicolas Patry committed
64
        speculate: u32,
65
        generation_health: Arc<AtomicBool>,
66
        tokenizer_config: HubTokenizerConfig,
67
68
    ) -> Self {
        // Infer shared state
Nicolas Patry's avatar
Nicolas Patry committed
69
        let queue = Queue::new(requires_padding, 16, window_size, speculate);
70
71
72
73
74
75
76
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
77
            waiting_served_ratio,
78
            max_batch_prefill_tokens,
79
            max_batch_total_tokens,
80
            max_waiting_tokens,
81
            max_batch_size,
82
            queue.clone(),
83
            shared.clone(),
84
            generation_health,
85
86
        ));

87
88
89
90
        let chat_template = tokenizer_config
            .chat_template
            .map(|t| ChatTemplate::new(t, tokenizer_config.bos_token, tokenizer_config.eos_token));

91
92
93
94
95
        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
96
            queue,
97
            shared,
98
            chat_template,
99
100
101
102
            limit_concurrent_requests: semaphore,
        }
    }

103
    /// Add a new request to the queue and return a stream of InferStreamResponse
104
    #[instrument(skip_all)]
105
106
107
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
108
    ) -> Result<GenerateStreamResponse, InferError> {
109
        // Limit concurrent requests by acquiring a permit from the semaphore
110
111
112
113
114
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
115
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
116
117
118
                tracing::error!("{err}");
                err
            })?;
119
120

        // Validate request
121
122
123
124
125
        let valid_request = self.validation.validate(request).await.map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            err
        })?;
126
127

        // MPSC channel to communicate with the background batching task
OlivierDehaene's avatar
OlivierDehaene committed
128
        let (response_tx, response_rx) = mpsc::unbounded_channel();
129
        let input_length = valid_request.input_length;
130

131
132
        // Append the request to the queue
        self.queue.append(Entry {
133
134
            request: valid_request,
            response_tx,
135
136
137
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
138
139
140
            batch_time: None,
        });

141
        // Notify the background task that we have a new entry in the queue that needs
142
143
144
145
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
146
147
148
149
150
        Ok((
            permit,
            input_length,
            UnboundedReceiverStream::new(response_rx),
        ))
151
152
    }

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    /// Tokenizer the input
    #[instrument(skip_all)]
    pub(crate) async fn tokenize(
        &self,
        request: GenerateRequest,
    ) -> Result<Option<tokenizers::Encoding>, InferError> {
        // Tokenize request
        let inputs = request.inputs;
        let truncate = request.parameters.truncate;
        let encoding = self
            .validation
            .tokenize(inputs, truncate)
            .await
            .map_err(|err| {
                tracing::error!("Tokenization {err}");
                err
            })?;

        // Return Encoding
        Ok(encoding.map(|(encoding, _)| encoding))
    }

175
176
    /// Apply the chat template to the chat request
    #[instrument(skip_all)]
177
    pub(crate) fn apply_chat_template(&self, messages: Vec<Message>) -> Result<String, InferError> {
178
        self.chat_template
179
180
            .as_ref()
            .ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
181
            .apply(messages)
182
183
184
            .map_err(|e| {
                metrics::increment_counter!("tgi_request_failure", "err" => "template");
                tracing::error!("{e}");
185
                e
186
187
188
            })
    }

189
    /// Add a new request to the queue and return a InferResponse
190
    #[instrument(skip_all)]
191
192
193
194
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
Nicolas Patry's avatar
Nicolas Patry committed
195
196
        let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);

197
        // Create stream and keep semaphore permit as long as generate lives
198
        let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
199
200
201
202

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
Nicolas Patry's avatar
Nicolas Patry committed
203
        let mut result_top_tokens = Vec::new();
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
220
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
221
222
223
                        .collect();
                }
                // Push last token
Nicolas Patry's avatar
Nicolas Patry committed
224
225
226
227
                InferStreamResponse::Intermediate { token, top_tokens } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                }
228
229
230
231
232
233
234
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
Nicolas Patry's avatar
Nicolas Patry committed
235
                    top_tokens,
236
237
                } => {
                    result_tokens.push(token);
Nicolas Patry's avatar
Nicolas Patry committed
238
                    result_top_tokens.push(top_tokens);
239
240
241
242
243
244
245
246
247
248
249
250
251
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
252
                _input_length,
253
254
255
256
                tokens: result_tokens,
                generated_text,
                queued,
                start,
Nicolas Patry's avatar
Nicolas Patry committed
257
258
259
260
261
                top_tokens: if use_top_tokens {
                    result_top_tokens
                } else {
                    Vec::new()
                },
262
263
            })
        } else {
264
            let err = InferError::IncompleteGeneration;
265
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
266
267
            tracing::error!("{err}");
            Err(err)
268
269
        }
    }
270
271
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
272
    #[instrument(skip(self, request))]
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
307
308
}

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#[derive(Clone)]
struct ChatTemplate {
    template: Template<'static, 'static>,
    bos_token: Option<String>,
    eos_token: Option<String>,
}

impl ChatTemplate {
    fn new(template: String, bos_token: Option<String>, eos_token: Option<String>) -> Self {
        let mut env = Box::new(Environment::new());
        let template_str = template.into_boxed_str();
        env.add_function("raise_exception", raise_exception);
        // leaking env and template_str as read-only, static resources for performance.
        let template = Box::leak(env)
            .template_from_str(Box::leak(template_str))
            .unwrap();

        Self {
            template,
            bos_token,
            eos_token,
        }
    }

    fn apply(&self, messages: Vec<Message>) -> Result<String, InferError> {
        self.template
            .render(ChatTemplateInputs {
                messages,
                bos_token: self.bos_token.as_deref(),
                eos_token: self.eos_token.as_deref(),
                add_generation_prompt: true,
            })
            .map_err(InferError::TemplateError)
    }
}

345
346
347
348
/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
349
#[allow(clippy::too_many_arguments)]
350
351
async fn batching_task(
    mut client: ShardedClient,
352
    waiting_served_ratio: f32,
353
    max_batch_prefill_tokens: u32,
354
    max_batch_total_tokens: u32,
355
    max_waiting_tokens: usize,
356
    max_batch_size: Option<usize>,
357
    queue: Queue,
358
    shared: Arc<Shared>,
359
    generation_health: Arc<AtomicBool>,
360
361
362
363
364
365
) {
    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

366
        // Get the next batch from the queue
367
        // This batch might be smaller than the maximum batch size if there are not enough requests
368
        // waiting in the queue
369
        while let Some((mut entries, batch, span)) = queue
370
371
372
373
374
375
            .next_batch(
                None,
                max_batch_size,
                max_batch_prefill_tokens,
                max_batch_total_tokens,
            )
376
            .await
377
        {
378
            let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
379
380
                .instrument(span)
                .await;
381
382
383
384
385
386
387
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
388
                let batch_max_tokens = batch.max_tokens;
389
                let mut batches = vec![batch];
390
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
391
392
393
394
395
396
397
398
399
400
401
                metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);

                let min_size = if waiting_tokens >= max_waiting_tokens {
                    // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                    // to add a new batch even though its size might be small
                    None
                } else {
                    // Minimum batch size
                    Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
                };

402
                let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
403
                let max_size = max_batch_size.map(|max_size| max_size - batch_size as usize);
404
405

                // Try to get a new batch
406
                if let Some((mut new_entries, new_batch, span)) = queue
407
                    .next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget)
408
                    .await
409
410
411
412
413
414
415
                {
                    // Tracking metrics
                    if min_size.is_some() {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
                    } else {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
                    }
416

417
418
419
420
421
422
423
424
425
426
427
428
                    entries.iter_mut().for_each(|(_, entry)| {
                        // Create a new span to add the info that this entry is waiting
                        // because a new batch is being computed
                        let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
                        // Add relationships
                        span.follows_from(&entry_waiting_span);
                        entry_waiting_span.follows_from(&span);
                        // Update entry
                        entry.temp_span = Some(entry_waiting_span);
                    });

                    // Generate one token for this new batch to have the attention past in cache
429
430
431
432
                    let new_cached_batch =
                        prefill(&mut client, new_batch, &mut new_entries, &generation_health)
                            .instrument(span)
                            .await;
433
434
435
436
437
438
                    // Reset waiting counter
                    waiting_tokens = 1;
                    // Extend current batch with the new batch
                    if let Some(new_cached_batch) = new_cached_batch {
                        entries.extend(new_entries);
                        batches.push(new_cached_batch);
439
440
                    }
                }
441

442
443
444
445
446
447
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
448
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
449
450
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
451
452
453
454
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
455

456
                cached_batch = decode(&mut client, batches, &mut entries, &generation_health)
457
458
                    .instrument(next_batch_span)
                    .await;
459
460
                waiting_tokens += 1;
            }
461
            metrics::gauge!("tgi_batch_current_size", 0.0);
462
            metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
463
464
465
466
        }
    }
}

467
#[instrument(skip_all)]
468
469
470
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
471
    entries: &mut IntMap<u64, Entry>,
472
    generation_health: &Arc<AtomicBool>,
473
) -> Option<CachedBatch> {
474
    let start_time = Instant::now();
475
    let batch_id = batch.id;
476
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
477
478

    match client.prefill(batch).await {
479
        Ok((generations, next_batch, timings)) => {
480
481
            // Update health
            generation_health.store(true, Ordering::SeqCst);
482
483

            let start_filtering_time = Instant::now();
484
            // Send generated tokens and filter stopped entries
485
486
487
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
488
            let next_batch = filter_batch(client, next_batch, entries).await;
489

490
491
492
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill");
493
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
494
495
496
497
498
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
499
500
            // Update health
            generation_health.store(false, Ordering::SeqCst);
501
            let _ = client.clear_cache(Some(batch_id)).await;
502
503
504
505
506
507
508
509
510
511
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
512
    batches: Vec<CachedBatch>,
513
    entries: &mut IntMap<u64, Entry>,
514
    generation_health: &Arc<AtomicBool>,
515
) -> Option<CachedBatch> {
516
    let start_time = Instant::now();
517
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
518
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
519
520

    match client.decode(batches).await {
521
        Ok((generations, next_batch, timings)) => {
522
523
            // Update health
            generation_health.store(true, Ordering::SeqCst);
524
525

            let start_filtering_time = Instant::now();
526
            // Send generated tokens and filter stopped entries
527
528
529
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
530
            let next_batch = filter_batch(client, next_batch, entries).await;
531

532
533
534
535
536
537
            if let Some(concat_duration) = timings.concat {
                metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode");
            }
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode");
538
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
539
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
540
541
542
543
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
544
            generation_health.store(false, Ordering::SeqCst);
545
546
547
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
548
            send_errors(err, entries);
549
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
550
551
552
553
554
            None
        }
    }
}

555
556
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
557
558
async fn filter_batch(
    client: &mut ShardedClient,
559
    next_batch: Option<CachedBatch>,
560
    entries: &IntMap<u64, Entry>,
561
) -> Option<CachedBatch> {
562
563
564
565
566
567
568
569
570
571
    let mut batch = next_batch?;

    // No need to filter
    if batch.size as usize == entries.len() {
        return Some(batch);
    }

    let id = batch.id;

    // Retain only requests that are still in entries
572
    batch.request_ids.retain(|id| entries.contains_key(id));
573

574
    if batch.request_ids.is_empty() {
575
576
577
578
579
580
581
582
583
        // All requests have been filtered out
        // Next batch is now empty
        // Clear it from the Python shards cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.clear_cache(Some(id)).await.unwrap();
        None
    } else {
        // Filter Python shard cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
584
        client.filter_batch(id, batch.request_ids).await.unwrap()
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    }
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
OlivierDehaene's avatar
OlivierDehaene committed
606
            tracing::error!("Entry response channel error.");
607
608
609
610
611
612
613
614
615
616
617
618
619
            metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
OlivierDehaene's avatar
OlivierDehaene committed
620
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
621
    // Return directly if the channel is disconnected
OlivierDehaene's avatar
OlivierDehaene committed
622
623
    if entry.response_tx.is_closed() {
        metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
624
625
626
        return Ok(true);
    }

627
628
629
630
    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Send message
OlivierDehaene's avatar
OlivierDehaene committed
631
632
633
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
634
635
636
    }

    // Create last Token
Nicolas Patry's avatar
Nicolas Patry committed
637
638
639
640
641
642
    let tokens_ = generation.tokens.expect("Non empty tokens in generation");
    let n = tokens_.ids.len();
    metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64);
    let mut iterator = tokens_
        .ids
        .into_iter()
643
644
645
        .zip(tokens_.logprobs)
        .zip(tokens_.texts)
        .zip(tokens_.is_special)
Nicolas Patry's avatar
Nicolas Patry committed
646
647
648
649
650
651
652
653
654
655
        .enumerate()
        .peekable();
    while let Some((i, (((id, logprob), text), special))) = iterator.next() {
        let token = Token {
            id,
            text,
            logprob,
            special,
        };
        let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) {
Nicolas Patry's avatar
Nicolas Patry committed
656
657
            top_tokens_
                .ids
Nicolas Patry's avatar
Nicolas Patry committed
658
659
660
661
662
                .iter()
                .zip(top_tokens_.logprobs.iter())
                .zip(top_tokens_.texts.iter())
                .zip(top_tokens_.is_special.iter())
                .map(|(((&id, &logprob), text), &special)| Token {
Nicolas Patry's avatar
Nicolas Patry committed
663
                    id,
Nicolas Patry's avatar
Nicolas Patry committed
664
                    text: text.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
665
666
                    logprob,
                    special,
Nicolas Patry's avatar
Nicolas Patry committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
                })
                .collect()
        } else {
            vec![]
        };
        match (&generation.generated_text, iterator.peek()) {
            (Some(generated_text), None) => {
                // Generation has ended
                stopped = true;
                // Send message
                entry.response_tx.send(Ok(InferStreamResponse::End {
                    token,
                    top_tokens,
                    generated_text: generated_text.clone(),
                    queued: entry.queue_time,
                    start: entry.batch_time.unwrap(),
                }))?;
            }
            _ => {
                // Send message
                entry
                    .response_tx
                    .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?;
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
692
693
    }

694
695
696
    Ok(stopped)
}

697
/// Send errors to Infer for all `entries`
698
699
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
700
    entries.drain().for_each(|(_, entry)| {
701
702
703
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
704
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
705
706
        tracing::error!("{err}");

707
708
709
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
OlivierDehaene's avatar
OlivierDehaene committed
710
            .send(Err(err))
711
712
713
714
715
716
717
            .unwrap_or(());
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
Nicolas Patry's avatar
Nicolas Patry committed
718
    Prefill(Tokens),
719
    // Intermediate messages
Nicolas Patry's avatar
Nicolas Patry committed
720
721
722
723
    Intermediate {
        token: Token,
        top_tokens: Vec<Token>,
    },
724
725
726
    // Last message
    End {
        token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
727
        top_tokens: Vec<Token>,
728
729
730
731
732
733
734
735
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
736
737
738
739
    /// input_length is the input as perceived by the rust tokenizer in the
    /// validation pathway. It is redundant with prefill.len() but prefill
    /// has data only if the user asked for it. This will always be filled.
    pub(crate) _input_length: u32,
740
    pub(crate) prefill: Vec<PrefillToken>,
741
742
743
744
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
Nicolas Patry's avatar
Nicolas Patry committed
745
    pub(crate) top_tokens: Vec<Vec<Token>>,
746
747
748
749
750
751
752
753
754
755
756
757
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
758
759
    #[error("Template error: {0}")]
    TemplateError(#[from] minijinja::Error),
760
}
761
762
763
764
765
766
767
768

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
769
            InferError::TemplateError(_) => "template_error",
770
771
772
        }
    }
}
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

// tests
#[cfg(test)]
mod tests {
    use crate::infer::raise_exception;
    use crate::ChatTemplateInputs;
    use crate::Message;
    use minijinja::Environment;

    #[test]
    fn test_chat_template() {
        let env = Environment::new();

        let source = r#"
        {% for message in messages %}
            {% if message['role'] == 'system' %}
                {% if message['content']%}
                    {{'### System:\n' + message['content']+'\n\n'}}
                {% endif %}
            {% elif message['role'] == 'user' %}
                {{'### User:\n' + message['content']+'\n\n'}}
            {% elif message['role'] == 'assistant' %}
                {{'### Assistant:\n'  + message['content']}}
            {% endif %}
            {% if loop.last and add_generation_prompt %}
                {{ '### Assistant:\n' }}
            {% endif %}
        {% endfor %}"#;

        // trim all the whitespace
        let source = source
            .lines()
            .map(|line| line.trim())
            .collect::<Vec<&str>>()
            .join("");

        let tmpl = env.template_from_str(&source);

        let chat_template_inputs = ChatTemplateInputs {
            messages: vec![
                Message {
                    role: "user".to_string(),
                    content: "Hi!".to_string(),
816
                    name: None,
817
818
819
820
                },
                Message {
                    role: "assistant".to_string(),
                    content: "Hello how can I help?".to_string(),
821
                    name: None,
822
823
824
825
                },
                Message {
                    role: "user".to_string(),
                    content: "What is Deep Learning?".to_string(),
826
                    name: None,
827
828
829
830
                },
                Message {
                    role: "assistant".to_string(),
                    content: "magic!".to_string(),
831
                    name: None,
832
833
834
835
                },
            ],
            bos_token: Some("[BOS]"),
            eos_token: Some("[EOS]"),
836
            add_generation_prompt: true,
837
838
839
840
841
842
        };

        let result = tmpl.unwrap().render(chat_template_inputs).unwrap();

        assert_eq!(
            result,
843
            "### User:\nHi!\n\n### Assistant:\nHello how can I help?### User:\nWhat is Deep Learning?\n\n### Assistant:\nmagic!### Assistant:\n"
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
        );
    }

    #[test]
    fn test_chat_template_invalid_with_raise() {
        let mut env = Environment::new();
        env.add_function("raise_exception", raise_exception);

        let source = r#"
        {{ bos_token }}
        {% for message in messages %}
        {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
        {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
        {% endif %}
        {% if message['role'] == 'user' %}
        {{ '[INST] ' + message['content'] + ' [/INST]' }}
        {% elif message['role'] == 'assistant' %}
        {{ message['content'] + eos_token}}
        {% else %}
        {{ raise_exception('Only user and assistant roles are supported!') }}
        {% endif %}
        {% endfor %}"#;

        // trim all the whitespace
        let source = source
            .lines()
            .map(|line| line.trim())
            .collect::<Vec<&str>>()
            .join("");

        let tmpl = env.template_from_str(&source);

        let chat_template_inputs = ChatTemplateInputs {
            messages: vec![
                Message {
                    role: "user".to_string(),
                    content: "Hi!".to_string(),
881
                    name: None,
882
883
884
885
                },
                Message {
                    role: "user".to_string(),
                    content: "Hi again!".to_string(),
886
                    name: None,
887
888
889
890
                },
                Message {
                    role: "assistant".to_string(),
                    content: "Hello how can I help?".to_string(),
891
                    name: None,
892
893
894
895
                },
                Message {
                    role: "user".to_string(),
                    content: "What is Deep Learning?".to_string(),
896
                    name: None,
897
898
899
900
                },
                Message {
                    role: "assistant".to_string(),
                    content: "magic!".to_string(),
901
                    name: None,
902
903
904
905
                },
            ],
            bos_token: Some("[BOS]"),
            eos_token: Some("[EOS]"),
906
            add_generation_prompt: true,
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
        };

        let result = tmpl.unwrap().render(chat_template_inputs); //.err().unwrap();

        match result {
            Ok(_) => panic!("Should have failed"),
            Err(e) => {
                assert_eq!(
                    e.detail().unwrap(),
                    "Conversation roles must alternate user/assistant/user/assistant/..."
                );
            }
        }
    }

    #[test]
    fn test_chat_template_valid_with_raise() {
        let mut env = Environment::new();
        env.add_function("raise_exception", raise_exception);

        let source = r#"
        {{ bos_token }}
        {% for message in messages %}
        {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
        {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
        {% endif %}
        {% if message['role'] == 'user' %}
        {{ '[INST] ' + message['content'] + ' [/INST]' }}
        {% elif message['role'] == 'assistant' %}
        {{ message['content'] + eos_token}}
        {% else %}
        {{ raise_exception('Only user and assistant roles are supported!') }}
        {% endif %}
        {% endfor %}"#;

        // trim all the whitespace
        let source = source
            .lines()
            .map(|line| line.trim())
            .collect::<Vec<&str>>()
            .join("");

        let tmpl = env.template_from_str(&source);

        let chat_template_inputs = ChatTemplateInputs {
            messages: vec![
                Message {
                    role: "user".to_string(),
                    content: "Hi!".to_string(),
956
                    name: None,
957
958
959
960
                },
                Message {
                    role: "assistant".to_string(),
                    content: "Hello how can I help?".to_string(),
961
                    name: None,
962
963
964
965
                },
                Message {
                    role: "user".to_string(),
                    content: "What is Deep Learning?".to_string(),
966
                    name: None,
967
968
969
970
                },
                Message {
                    role: "assistant".to_string(),
                    content: "magic!".to_string(),
971
                    name: None,
972
973
974
975
                },
            ],
            bos_token: Some("[BOS]"),
            eos_token: Some("[EOS]"),
976
            add_generation_prompt: true,
977
978
979
980
981
        };

        let result = tmpl.unwrap().render(chat_template_inputs).unwrap();
        assert_eq!(result, "[BOS][INST] Hi! [/INST]Hello how can I help?[EOS][INST] What is Deep Learning? [/INST]magic![EOS]");
    }
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

    #[test]
    fn test_chat_template_valid_with_add_generation_prompt() {
        let mut env = Environment::new();
        env.add_function("raise_exception", raise_exception);

        let source = r#"
        {% for message in messages %}
        {{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}
        {% endfor %}
        {% if add_generation_prompt %}
            {{ '<|im_start|>assistant\n' }}
        {% endif %}"#;

        // trim all the whitespace
        let source = source
            .lines()
            .map(|line| line.trim())
            .collect::<Vec<&str>>()
            .join("");

        let tmpl = env.template_from_str(&source);

        let chat_template_inputs = ChatTemplateInputs {
            messages: vec![
                Message {
                    role: "user".to_string(),
                    content: "Hi!".to_string(),
1010
                    name: None,
1011
1012
1013
1014
                },
                Message {
                    role: "assistant".to_string(),
                    content: "Hello how can I help?".to_string(),
1015
                    name: None,
1016
1017
1018
1019
                },
                Message {
                    role: "user".to_string(),
                    content: "What is Deep Learning?".to_string(),
1020
                    name: None,
1021
1022
1023
1024
                },
                Message {
                    role: "assistant".to_string(),
                    content: "magic!".to_string(),
1025
                    name: None,
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
                },
            ],
            bos_token: Some("[BOS]"),
            eos_token: Some("[EOS]"),
            add_generation_prompt: true,
        };

        let result = tmpl.unwrap().render(chat_template_inputs).unwrap();
        assert_eq!(result, "<|im_start|>user\nHi!<|im_end|>\n<|im_start|>assistant\nHello how can I help?<|im_end|>\n<|im_start|>user\nWhat is Deep Learning?<|im_end|>\n<|im_start|>assistant\nmagic!<|im_end|>\n<|im_start|>assistant\n");
    }
1036
}