infer.rs 14.6 KB
Newer Older
1
2
3
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
use crate::GenerateRequest;
4
use crate::{Entry, Queue, Token};
5
6
7
8
9
10
11
12
13
14
15
use nohash_hasher::IntMap;
use std::future::Future;
use std::sync::Arc;
use text_generation_client::{
    Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
};
use thiserror::Error;
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
16
use tracing::{info_span, instrument, Instrument, Span};
17
18
19
20
21
22

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
23
24
    /// Request queue
    queue: Queue,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
        max_batch_size: usize,
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
    ) -> Self {
        // Infer shared state
46
        let queue = Queue::new();
47
48
49
50
51
52
53
54
55
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
            max_batch_size,
            max_waiting_tokens,
56
            queue.clone(),
57
58
59
60
61
62
63
64
            shared.clone(),
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
65
            queue,
66
67
68
69
70
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

71
    /// Add a new request to the queue and return a stream of InferStreamResponse
72
    #[instrument(skip(self))]
73
74
75
76
77
78
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
    ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
        // Limit concurrent requests by acquiring a permit from the semaphore
        // This permit will live as long as Entry
79
80
81
82
83
84
85
86
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
                tracing::error!("{err}");
                err
            })?;
87
88
89
90
91
92
93

        // Validate request
        let valid_request = self.validation.validate(request).await?;

        // MPSC channel to communicate with the background batching task
        let (response_tx, response_rx) = mpsc::unbounded_channel();

94
95
        // Append the request to the queue
        self.queue.append(Entry {
96
97
            request: valid_request,
            response_tx,
98
99
100
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
101
102
103
104
            batch_time: None,
            _permit: permit,
        });

105
        // Notify the background task that we have a new entry in the queue that needs
106
107
108
109
110
111
112
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
        Ok(UnboundedReceiverStream::new(response_rx))
    }

113
    /// Add a new request to the queue and return a InferResponse
114
    #[instrument(skip(self))]
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
        // Create stream
        let mut stream = self.generate_stream(request).await?;

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
141
                        .map(|((id, logprob), text)| Token { id, text, logprob })
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
                        .collect();
                }
                // Push last token
                InferStreamResponse::Token(token) => result_tokens.push(token),
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                } => {
                    result_tokens.push(token);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
            })
        } else {
174
175
176
            let err = InferError::IncompleteGeneration;
            tracing::error!("{err}");
            Err(err)
177
178
179
180
181
182
183
184
185
186
187
188
        }
    }
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
async fn batching_task(
    mut client: ShardedClient,
    max_batch_size: usize,
    max_waiting_tokens: usize,
189
    queue: Queue,
190
191
192
193
194
195
196
197
198
199
    shared: Arc<Shared>,
) {
    // Minimum batch size after which we try to add more requests
    let limit_min_batch_size = (max_batch_size / 2) as u32;

    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

200
        // Get the next batch from the queue
201
        // This batch might be smaller than the maximum batch size if there are not enough requests
202
        // waiting in the queue
203
204
205
206
        while let Some((mut entries, batch, span)) = queue.next_batch(None, max_batch_size).await {
            let mut cached_batch = wrap_future(client.prefill(batch), &mut entries)
                .instrument(span)
                .await;
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
                let mut batches = vec![batch];

                // If the current batch is too small, we try to add more requests to it
                if batch_size <= limit_min_batch_size {
                    let min_size = match waiting_tokens {
                        // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                        // to add a new batch even though its size might be small
                        _ if waiting_tokens >= max_waiting_tokens => None,
                        // Minimum size criteria
                        _ => Some(limit_min_batch_size as usize),
                    };

                    // Try to get a new batch
227
                    if let Some((mut new_entries, new_batch, span)) = queue
228
229
                        .next_batch(min_size, max_batch_size - batch_size as usize)
                        .await
230
                    {
231
232
233
234
235
236
237
238
239
240
241
242
                        let new_batch_size = new_batch.size;
                        entries.iter_mut().for_each(|(_, entry)| {
                            // Create a new span to add the info that this entry is waiting
                            // because a new batch is being computed
                            let entry_waiting_span =
                                info_span!(parent: &entry.span, "waiting", batch_size = new_batch_size);
                            // Add relationship
                            entry_waiting_span.follows_from(&span);
                            // Update entry
                            entry.temp_span = Some(entry_waiting_span);
                        });

243
244
                        // Generate one token for this new batch to have the attention past in cache
                        let new_cached_batch =
245
246
247
                            wrap_future(client.prefill(new_batch), &mut new_entries)
                                .instrument(span)
                                .await;
248
249
250
251
252
253
254
255
256
                        // Reset waiting counter
                        waiting_tokens = 1;
                        // Extend current batch with the new batch
                        if let Some(new_cached_batch) = new_cached_batch {
                            entries.extend(new_entries);
                            batches.push(new_cached_batch);
                        }
                    }
                }
257
258
259
260
261
262
263
264
265
266
267
268
269
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
                    let entry_batch_span =
                        info_span!(parent: &entry.span, "infer", batch_size = next_batch_size);
                    // Add relationship
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
270

271
272
273
                cached_batch = wrap_future(client.decode(batches), &mut entries)
                    .instrument(next_batch_span)
                    .await;
274
275
276
277
278
279
280
                waiting_tokens += 1;
            }
        }
    }
}

/// Wrap a future inside a match statement to handle errors and send the responses to Infer
281
#[instrument(skip_all)]
282
283
284
285
286
287
288
289
290
291
292
async fn wrap_future(
    future: impl Future<Output = Result<(Vec<Generation>, Option<Batch>), ClientError>>,
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
    match future.await {
        Ok((generations, next_batch)) => {
            send_generations(generations, entries);
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
293
            send_errors(err, entries);
294
295
296
297
298
299
            None
        }
    }
}

/// Send errors to Infer for all `entries`
300
301
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
302
    entries.drain().for_each(|(_, entry)| {
303
304
305
306
307
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
        tracing::error!("{err}");

308
309
310
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
311
            .send(Err(err))
312
313
314
315
316
            .unwrap_or(());
    });
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
317
#[instrument(skip_all)]
318
319
320
321
322
323
324
325
fn send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&generation.request_id)
            .expect("ID not found in entries. This is a bug.");

326
327
328
        // Create and enter a span to link this function back to the entry
        let _generation_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();

329
330
331
332
333
334
335
336
337
338
        if let Some(prefill_tokens) = generation.prefill_tokens {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))
                .unwrap_or(());
        }

        // Create last Token
339
340
341
342
343
        let token = Token {
            id: generation.token_id,
            text: generation.token_text,
            logprob: generation.token_logprob,
        };
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

        if let Some(generated_text) = generation.generated_text {
            // Remove entry as this is the last message
            // We can `expect` here as the request id should always be in the entries
            let entry = entries
                .remove(&generation.request_id)
                .expect("ID not found in entries. This is a bug.");

            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::End {
                    token,
                    generated_text,
359
                    queued: entry.queue_time,
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
                    start: entry.batch_time.unwrap(),
                }))
                .unwrap_or(());
        } else {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Token(token)))
                .unwrap_or(());
        }
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
    Prefill(PrefillTokens),
    // Intermediate messages
    Token(Token),
    // Last message
    End {
        token: Token,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
    pub(crate) prefill: Vec<Token>,
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}