infer.rs 26.2 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
4
use crate::HubTokenizerConfig;
use crate::{ChatRequest, GenerateRequest, GenerateStreamResponse, PrefillToken};
5
use crate::{Entry, Queue, Token};
6
use futures::future::try_join_all;
7
use minijinja::{Environment, ErrorKind, Template};
8
use nohash_hasher::IntMap;
9
10
11
12
use std::sync::{
    atomic::{AtomicBool, Ordering},
    Arc,
};
13
use text_generation_client::{
Nicolas Patry's avatar
Nicolas Patry committed
14
    Batch, CachedBatch, ClientError, GeneratedText, Generation, ShardedClient, Tokens,
15
16
};
use thiserror::Error;
OlivierDehaene's avatar
OlivierDehaene committed
17
use tokio::sync::mpsc::error::SendError;
18
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
19
use tokio::time::Instant;
OlivierDehaene's avatar
OlivierDehaene committed
20
21
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
22
use tracing::{info_span, instrument, Instrument, Span};
23
24
25
26
27
28

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
29
30
    /// Request queue
    queue: Queue,
31
32
33
34
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
35
36
    /// Chat template
    template: Option<Template<'static, 'static>>,
37
38
39
40
41
42
43
44
45
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
46
    #[allow(clippy::too_many_arguments)]
47
48
49
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
50
        waiting_served_ratio: f32,
51
        max_batch_prefill_tokens: u32,
52
        max_batch_total_tokens: u32,
53
54
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
55
        requires_padding: bool,
56
        window_size: Option<u32>,
Nicolas Patry's avatar
Nicolas Patry committed
57
        speculate: u32,
58
        generation_health: Arc<AtomicBool>,
59
        tokenizer_config: HubTokenizerConfig,
60
61
    ) -> Self {
        // Infer shared state
Nicolas Patry's avatar
Nicolas Patry committed
62
        let queue = Queue::new(requires_padding, 16, window_size, speculate);
63
64
65
66
67
68
69
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
70
            waiting_served_ratio,
71
            max_batch_prefill_tokens,
72
            max_batch_total_tokens,
73
            max_waiting_tokens,
74
            queue.clone(),
75
            shared.clone(),
76
            generation_health,
77
78
79
80
81
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

82
83
84
85
86
87
88
89
90
        let template = tokenizer_config.chat_template.map(|t| {
            let env = Box::new(Environment::new());
            let template_str = t.into_boxed_str();
            // leaking env and template_str as read-only, static resources for performance.
            Box::leak(env)
                .template_from_str(Box::leak(template_str))
                .unwrap()
        });

91
92
        Self {
            validation,
93
            queue,
94
95
            shared,
            limit_concurrent_requests: semaphore,
96
            template,
97
98
99
        }
    }

100
    /// Add a new request to the queue and return a stream of InferStreamResponse
101
    #[instrument(skip_all)]
102
103
104
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
105
    ) -> Result<GenerateStreamResponse, InferError> {
106
        // Limit concurrent requests by acquiring a permit from the semaphore
107
108
109
110
111
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
112
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
113
114
115
                tracing::error!("{err}");
                err
            })?;
116
117

        // Validate request
118
119
120
121
122
        let valid_request = self.validation.validate(request).await.map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            err
        })?;
123
124

        // MPSC channel to communicate with the background batching task
OlivierDehaene's avatar
OlivierDehaene committed
125
        let (response_tx, response_rx) = mpsc::unbounded_channel();
126
        let input_length = valid_request.input_length;
127

128
129
        // Append the request to the queue
        self.queue.append(Entry {
130
131
            request: valid_request,
            response_tx,
132
133
134
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
135
136
137
            batch_time: None,
        });

138
        // Notify the background task that we have a new entry in the queue that needs
139
140
141
142
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
143
144
145
146
147
        Ok((
            permit,
            input_length,
            UnboundedReceiverStream::new(response_rx),
        ))
148
149
    }

150
151
152
153
154
155
156
157
158
159
160
161
162
163
    /// Apply the chat template to the chat request
    #[instrument(skip_all)]
    pub(crate) fn apply_chat_template(&self, chat: ChatRequest) -> Result<String, InferError> {
        self.template
            .as_ref()
            .ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
            .render(chat)
            .map_err(|e| {
                metrics::increment_counter!("tgi_request_failure", "err" => "template");
                tracing::error!("{e}");
                InferError::TemplateError(e)
            })
    }

164
    /// Add a new request to the queue and return a InferResponse
165
    #[instrument(skip_all)]
166
167
168
169
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
Nicolas Patry's avatar
Nicolas Patry committed
170
171
        let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);

172
        // Create stream and keep semaphore permit as long as generate lives
173
        let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
174
175
176
177

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
Nicolas Patry's avatar
Nicolas Patry committed
178
        let mut result_top_tokens = Vec::new();
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
195
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
196
197
198
                        .collect();
                }
                // Push last token
Nicolas Patry's avatar
Nicolas Patry committed
199
200
201
202
                InferStreamResponse::Intermediate { token, top_tokens } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                }
203
204
205
206
207
208
209
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
Nicolas Patry's avatar
Nicolas Patry committed
210
                    top_tokens,
211
212
                } => {
                    result_tokens.push(token);
Nicolas Patry's avatar
Nicolas Patry committed
213
                    result_top_tokens.push(top_tokens);
214
215
216
217
218
219
220
221
222
223
224
225
226
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
227
                _input_length,
228
229
230
231
                tokens: result_tokens,
                generated_text,
                queued,
                start,
Nicolas Patry's avatar
Nicolas Patry committed
232
233
234
235
236
                top_tokens: if use_top_tokens {
                    result_top_tokens
                } else {
                    Vec::new()
                },
237
238
            })
        } else {
239
            let err = InferError::IncompleteGeneration;
240
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
241
242
            tracing::error!("{err}");
            Err(err)
243
244
        }
    }
245
246
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
247
    #[instrument(skip(self, request))]
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
282
283
284
285
286
287
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
288
#[allow(clippy::too_many_arguments)]
289
290
async fn batching_task(
    mut client: ShardedClient,
291
    waiting_served_ratio: f32,
292
    max_batch_prefill_tokens: u32,
293
    max_batch_total_tokens: u32,
294
    max_waiting_tokens: usize,
295
    queue: Queue,
296
    shared: Arc<Shared>,
297
    generation_health: Arc<AtomicBool>,
298
299
300
301
302
303
) {
    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

304
        // Get the next batch from the queue
305
        // This batch might be smaller than the maximum batch size if there are not enough requests
306
        // waiting in the queue
307
308
309
        while let Some((mut entries, batch, span)) = queue
            .next_batch(None, max_batch_prefill_tokens, max_batch_total_tokens)
            .await
310
        {
311
            let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
312
313
                .instrument(span)
                .await;
314
315
316
317
318
319
320
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
321
                let batch_max_tokens = batch.max_tokens;
322
                let mut batches = vec![batch];
323
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
324
325
326
327
328
329
330
331
332
333
334
                metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);

                let min_size = if waiting_tokens >= max_waiting_tokens {
                    // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                    // to add a new batch even though its size might be small
                    None
                } else {
                    // Minimum batch size
                    Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
                };

335
                let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
336
337

                // Try to get a new batch
338
339
340
                if let Some((mut new_entries, new_batch, span)) = queue
                    .next_batch(min_size, max_batch_prefill_tokens, token_budget)
                    .await
341
342
343
344
345
346
347
                {
                    // Tracking metrics
                    if min_size.is_some() {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
                    } else {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
                    }
348

349
350
351
352
353
354
355
356
357
358
359
360
                    entries.iter_mut().for_each(|(_, entry)| {
                        // Create a new span to add the info that this entry is waiting
                        // because a new batch is being computed
                        let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
                        // Add relationships
                        span.follows_from(&entry_waiting_span);
                        entry_waiting_span.follows_from(&span);
                        // Update entry
                        entry.temp_span = Some(entry_waiting_span);
                    });

                    // Generate one token for this new batch to have the attention past in cache
361
362
363
364
                    let new_cached_batch =
                        prefill(&mut client, new_batch, &mut new_entries, &generation_health)
                            .instrument(span)
                            .await;
365
366
367
368
369
370
                    // Reset waiting counter
                    waiting_tokens = 1;
                    // Extend current batch with the new batch
                    if let Some(new_cached_batch) = new_cached_batch {
                        entries.extend(new_entries);
                        batches.push(new_cached_batch);
371
372
                    }
                }
373

374
375
376
377
378
379
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
380
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
381
382
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
383
384
385
386
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
387

388
                cached_batch = decode(&mut client, batches, &mut entries, &generation_health)
389
390
                    .instrument(next_batch_span)
                    .await;
391
392
                waiting_tokens += 1;
            }
393
            metrics::gauge!("tgi_batch_current_size", 0.0);
394
            metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
395
396
397
398
        }
    }
}

399
#[instrument(skip_all)]
400
401
402
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
403
    entries: &mut IntMap<u64, Entry>,
404
    generation_health: &Arc<AtomicBool>,
405
) -> Option<CachedBatch> {
406
    let start_time = Instant::now();
407
    let batch_id = batch.id;
408
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
409
410

    match client.prefill(batch).await {
411
        Ok((generations, next_batch, timings)) => {
412
413
            // Update health
            generation_health.store(true, Ordering::SeqCst);
414
415

            let start_filtering_time = Instant::now();
416
            // Send generated tokens and filter stopped entries
417
418
419
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
420
            let next_batch = filter_batch(client, next_batch, entries).await;
421

422
423
424
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill");
425
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
426
427
428
429
430
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
431
432
            // Update health
            generation_health.store(false, Ordering::SeqCst);
433
            let _ = client.clear_cache(Some(batch_id)).await;
434
435
436
437
438
439
440
441
442
443
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
444
    batches: Vec<CachedBatch>,
445
    entries: &mut IntMap<u64, Entry>,
446
    generation_health: &Arc<AtomicBool>,
447
) -> Option<CachedBatch> {
448
    let start_time = Instant::now();
449
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
450
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
451
452

    match client.decode(batches).await {
453
        Ok((generations, next_batch, timings)) => {
454
455
            // Update health
            generation_health.store(true, Ordering::SeqCst);
456
457

            let start_filtering_time = Instant::now();
458
            // Send generated tokens and filter stopped entries
459
460
461
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
462
            let next_batch = filter_batch(client, next_batch, entries).await;
463

464
465
466
467
468
469
            if let Some(concat_duration) = timings.concat {
                metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode");
            }
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode");
470
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
471
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
472
473
474
475
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
476
            generation_health.store(false, Ordering::SeqCst);
477
478
479
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
480
            send_errors(err, entries);
481
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
482
483
484
485
486
            None
        }
    }
}

487
488
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
489
490
async fn filter_batch(
    client: &mut ShardedClient,
491
    next_batch: Option<CachedBatch>,
492
    entries: &IntMap<u64, Entry>,
493
) -> Option<CachedBatch> {
494
495
496
497
498
499
500
501
502
503
    let mut batch = next_batch?;

    // No need to filter
    if batch.size as usize == entries.len() {
        return Some(batch);
    }

    let id = batch.id;

    // Retain only requests that are still in entries
504
    batch.request_ids.retain(|id| entries.contains_key(id));
505

506
    if batch.request_ids.is_empty() {
507
508
509
510
511
512
513
514
515
        // All requests have been filtered out
        // Next batch is now empty
        // Clear it from the Python shards cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.clear_cache(Some(id)).await.unwrap();
        None
    } else {
        // Filter Python shard cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
516
        client.filter_batch(id, batch.request_ids).await.unwrap()
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    }
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
OlivierDehaene's avatar
OlivierDehaene committed
538
            tracing::error!("Entry response channel error.");
539
540
541
542
543
544
545
546
547
548
549
550
551
            metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
OlivierDehaene's avatar
OlivierDehaene committed
552
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
553
    // Return directly if the channel is disconnected
OlivierDehaene's avatar
OlivierDehaene committed
554
555
    if entry.response_tx.is_closed() {
        metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
556
557
558
        return Ok(true);
    }

559
560
561
562
    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Send message
OlivierDehaene's avatar
OlivierDehaene committed
563
564
565
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
566
567
568
    }

    // Create last Token
Nicolas Patry's avatar
Nicolas Patry committed
569
570
571
572
573
574
    let tokens_ = generation.tokens.expect("Non empty tokens in generation");
    let n = tokens_.ids.len();
    metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64);
    let mut iterator = tokens_
        .ids
        .into_iter()
575
576
577
        .zip(tokens_.logprobs)
        .zip(tokens_.texts)
        .zip(tokens_.is_special)
Nicolas Patry's avatar
Nicolas Patry committed
578
579
580
581
582
583
584
585
586
587
        .enumerate()
        .peekable();
    while let Some((i, (((id, logprob), text), special))) = iterator.next() {
        let token = Token {
            id,
            text,
            logprob,
            special,
        };
        let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) {
Nicolas Patry's avatar
Nicolas Patry committed
588
589
            top_tokens_
                .ids
Nicolas Patry's avatar
Nicolas Patry committed
590
591
592
593
594
                .iter()
                .zip(top_tokens_.logprobs.iter())
                .zip(top_tokens_.texts.iter())
                .zip(top_tokens_.is_special.iter())
                .map(|(((&id, &logprob), text), &special)| Token {
Nicolas Patry's avatar
Nicolas Patry committed
595
                    id,
Nicolas Patry's avatar
Nicolas Patry committed
596
                    text: text.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
597
598
                    logprob,
                    special,
Nicolas Patry's avatar
Nicolas Patry committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
                })
                .collect()
        } else {
            vec![]
        };
        match (&generation.generated_text, iterator.peek()) {
            (Some(generated_text), None) => {
                // Generation has ended
                stopped = true;
                // Send message
                entry.response_tx.send(Ok(InferStreamResponse::End {
                    token,
                    top_tokens,
                    generated_text: generated_text.clone(),
                    queued: entry.queue_time,
                    start: entry.batch_time.unwrap(),
                }))?;
            }
            _ => {
                // Send message
                entry
                    .response_tx
                    .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?;
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
624
625
    }

626
627
628
    Ok(stopped)
}

629
/// Send errors to Infer for all `entries`
630
631
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
632
    entries.drain().for_each(|(_, entry)| {
633
634
635
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
636
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
637
638
        tracing::error!("{err}");

639
640
641
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
OlivierDehaene's avatar
OlivierDehaene committed
642
            .send(Err(err))
643
644
645
646
647
648
649
            .unwrap_or(());
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
Nicolas Patry's avatar
Nicolas Patry committed
650
    Prefill(Tokens),
651
    // Intermediate messages
Nicolas Patry's avatar
Nicolas Patry committed
652
653
654
655
    Intermediate {
        token: Token,
        top_tokens: Vec<Token>,
    },
656
657
658
    // Last message
    End {
        token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
659
        top_tokens: Vec<Token>,
660
661
662
663
664
665
666
667
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
668
669
670
671
    /// input_length is the input as perceived by the rust tokenizer in the
    /// validation pathway. It is redundant with prefill.len() but prefill
    /// has data only if the user asked for it. This will always be filled.
    pub(crate) _input_length: u32,
672
    pub(crate) prefill: Vec<PrefillToken>,
673
674
675
676
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
Nicolas Patry's avatar
Nicolas Patry committed
677
    pub(crate) top_tokens: Vec<Vec<Token>>,
678
679
680
681
682
683
684
685
686
687
688
689
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
690
691
    #[error("Template error: {0}")]
    TemplateError(#[from] minijinja::Error),
692
}
693
694
695
696
697
698
699
700

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
701
            InferError::TemplateError(_) => "template_error",
702
703
704
        }
    }
}