infer.rs 20.3 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
use crate::{Entry, Queue, Token};
4
use crate::{GenerateRequest, PrefillToken};
5
use flume::r#async::RecvStream;
6
use flume::SendError;
7
use futures::future::try_join_all;
8
use futures::stream::StreamExt;
9
10
11
12
13
14
use nohash_hasher::IntMap;
use std::sync::Arc;
use text_generation_client::{
    Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
};
use thiserror::Error;
15
use tokio::sync::{Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
16
use tokio::time::Instant;
17
use tracing::{info_span, instrument, Instrument, Span};
18
19
20
21
22
23

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
24
25
    /// Request queue
    queue: Queue,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
42
43
        waiting_served_ratio: f32,
        max_batch_total_tokens: u32,
44
45
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
46
        requires_padding: bool,
47
48
    ) -> Self {
        // Infer shared state
49
        let queue = Queue::new(requires_padding);
50
51
52
53
54
55
56
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
57
58
            waiting_served_ratio,
            max_batch_total_tokens,
59
            max_waiting_tokens,
60
            queue.clone(),
61
62
63
64
65
66
67
68
            shared.clone(),
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
69
            queue,
70
71
72
73
74
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

75
    /// Add a new request to the queue and return a stream of InferStreamResponse
76
    #[instrument(skip(self))]
77
78
79
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
80
81
82
83
84
85
86
    ) -> Result<
        (
            OwnedSemaphorePermit,
            RecvStream<Result<InferStreamResponse, InferError>>,
        ),
        InferError,
    > {
87
        // Limit concurrent requests by acquiring a permit from the semaphore
88
89
90
91
92
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
93
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
94
95
96
                tracing::error!("{err}");
                err
            })?;
97
98

        // Validate request
99
100
101
102
103
        let valid_request = self.validation.validate(request).await.map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            err
        })?;
104
105

        // MPSC channel to communicate with the background batching task
106
        let (response_tx, response_rx) = flume::unbounded();
107

108
109
        // Append the request to the queue
        self.queue.append(Entry {
110
111
            request: valid_request,
            response_tx,
112
113
114
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
115
116
117
            batch_time: None,
        });

118
        // Notify the background task that we have a new entry in the queue that needs
119
120
121
122
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
123
        Ok((permit, response_rx.into_stream()))
124
125
    }

126
    /// Add a new request to the queue and return a InferResponse
127
    #[instrument(skip(self))]
128
129
130
131
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
132
133
        // Create stream and keep semaphore permit as long as generate lives
        let (_permit, mut stream) = self.generate_stream(request).await?;
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
154
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                        .collect();
                }
                // Push last token
                InferStreamResponse::Token(token) => result_tokens.push(token),
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                } => {
                    result_tokens.push(token);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
            })
        } else {
187
            let err = InferError::IncompleteGeneration;
188
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
189
190
            tracing::error!("{err}");
            Err(err)
191
192
        }
    }
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
    #[instrument(skip(self))]
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
230
231
232
233
234
235
236
237
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
async fn batching_task(
    mut client: ShardedClient,
238
239
    waiting_served_ratio: f32,
    max_batch_total_tokens: u32,
240
    max_waiting_tokens: usize,
241
    queue: Queue,
242
243
244
245
246
247
248
    shared: Arc<Shared>,
) {
    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

249
        // Get the next batch from the queue
250
        // This batch might be smaller than the maximum batch size if there are not enough requests
251
        // waiting in the queue
252
253
254
        while let Some((mut entries, batch, span)) =
            queue.next_batch(None, max_batch_total_tokens).await
        {
255
            let mut cached_batch = prefill(&mut client, batch, &mut entries)
256
257
                .instrument(span)
                .await;
258
259
260
261
262
263
264
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
265
                let batch_max_tokens = batch.max_tokens;
266
                let mut batches = vec![batch];
267
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
                metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);

                let min_size = if waiting_tokens >= max_waiting_tokens {
                    // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                    // to add a new batch even though its size might be small
                    None
                } else {
                    // Minimum batch size
                    Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
                };

                let token_budget = max_batch_total_tokens - batch_max_tokens;

                // Try to get a new batch
                if let Some((mut new_entries, new_batch, span)) =
                    queue.next_batch(min_size, token_budget).await
                {
                    // Tracking metrics
                    if min_size.is_some() {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
                    } else {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
                    }
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                    entries.iter_mut().for_each(|(_, entry)| {
                        // Create a new span to add the info that this entry is waiting
                        // because a new batch is being computed
                        let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
                        // Add relationships
                        span.follows_from(&entry_waiting_span);
                        entry_waiting_span.follows_from(&span);
                        // Update entry
                        entry.temp_span = Some(entry_waiting_span);
                    });

                    // Generate one token for this new batch to have the attention past in cache
                    let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries)
                        .instrument(span)
                        .await;
                    // Reset waiting counter
                    waiting_tokens = 1;
                    // Extend current batch with the new batch
                    if let Some(new_cached_batch) = new_cached_batch {
                        entries.extend(new_entries);
                        batches.push(new_cached_batch);
313
314
                    }
                }
315

316
317
318
319
320
321
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
322
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
323
324
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
325
326
327
328
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
329

330
                cached_batch = decode(&mut client, batches, &mut entries)
331
332
                    .instrument(next_batch_span)
                    .await;
333
334
                waiting_tokens += 1;
            }
335
            metrics::gauge!("tgi_batch_current_size", 0.0);
336
            metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
337
338
339
340
        }
    }
}

341
#[instrument(skip_all)]
342
343
344
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
345
346
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
347
    let start_time = Instant::now();
348
    let batch_id = batch.id;
349
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
350
351
352

    match client.prefill(batch).await {
        Ok((generations, next_batch)) => {
353
            // Send generated tokens and filter stopped entries
354
355
356
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
357
            let next_batch = filter_batch(client, next_batch, entries).await;
358

359
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
360
361
362
363
364
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
365
            let _ = client.clear_cache(Some(batch_id)).await;
366
367
368
369
370
371
372
373
374
375
376
377
378
379
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
    batches: Vec<Batch>,
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
    let start_time = Instant::now();
380
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
381
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
382
383

    match client.decode(batches).await {
384
        Ok((generations, next_batch)) => {
385
            // Send generated tokens and filter stopped entries
386
387
388
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
389
            let next_batch = filter_batch(client, next_batch, entries).await;
390

391
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
392
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
393
394
395
396
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
397
398
399
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
400
            send_errors(err, entries);
401
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
402
403
404
405
406
            None
        }
    }
}

407
408
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
async fn filter_batch(
    client: &mut ShardedClient,
    next_batch: Option<Batch>,
    entries: &IntMap<u64, Entry>,
) -> Option<Batch> {
    let mut batch = next_batch?;

    // No need to filter
    if batch.size as usize == entries.len() {
        return Some(batch);
    }

    let id = batch.id;

    // Retain only requests that are still in entries
424
    batch.requests.retain(|r| entries.contains_key(&r.id));
425
426
427
428
429
430
431
432
433
434
435
436

    if batch.requests.is_empty() {
        // All requests have been filtered out
        // Next batch is now empty
        // Clear it from the Python shards cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.clear_cache(Some(id)).await.unwrap();
        None
    } else {
        // Filter Python shard cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.filter_batch(id, batch.requests).await.unwrap()
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    }
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
) -> Result<bool, SendError<Result<InferStreamResponse, InferError>>> {
    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Send message
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
    }

    // Create last Token
    let token = Token {
        id: generation.token_id,
        text: generation.token_text,
        logprob: generation.token_logprob,
        special: generation.token_is_special,
    };

    if let Some(generated_text) = generation.generated_text {
        // Generation has ended
        stopped = true;
        // Send message
        entry.response_tx.send(Ok(InferStreamResponse::End {
            token,
            generated_text,
            queued: entry.queue_time,
            start: entry.batch_time.unwrap(),
        }))?;
    } else {
        // Send message
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Token(token)))?;
    }
    Ok(stopped)
}

508
/// Send errors to Infer for all `entries`
509
510
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
511
    entries.drain().for_each(|(_, entry)| {
512
513
514
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
515
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
516
517
        tracing::error!("{err}");

518
519
520
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
521
            .send(Err(err))
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
            .unwrap_or(());
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
    Prefill(PrefillTokens),
    // Intermediate messages
    Token(Token),
    // Last message
    End {
        token: Token,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
543
    pub(crate) prefill: Vec<PrefillToken>,
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}
561
562
563
564
565
566
567
568
569
570
571

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
        }
    }
}