infer.rs 18.3 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
use crate::{Entry, Queue, Token};
4
use crate::{GenerateRequest, PrefillToken};
5
use futures::future::try_join_all;
6
7
8
9
10
11
12
13
14
15
use nohash_hasher::IntMap;
use std::sync::Arc;
use text_generation_client::{
    Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
};
use thiserror::Error;
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
16
use tracing::{info_span, instrument, Instrument, Span};
17
18
19
20
21
22

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
23
24
    /// Request queue
    queue: Queue,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
        max_batch_size: usize,
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
    ) -> Self {
        // Infer shared state
46
        let queue = Queue::new();
47
48
49
50
51
52
53
54
55
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
            max_batch_size,
            max_waiting_tokens,
56
            queue.clone(),
57
58
59
60
61
62
63
64
            shared.clone(),
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
65
            queue,
66
67
68
69
70
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

71
    /// Add a new request to the queue and return a stream of InferStreamResponse
72
    #[instrument(skip(self))]
73
74
75
76
77
78
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
    ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
        // Limit concurrent requests by acquiring a permit from the semaphore
        // This permit will live as long as Entry
79
80
81
82
83
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
84
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
85
86
87
                tracing::error!("{err}");
                err
            })?;
88
89
90
91
92
93
94

        // Validate request
        let valid_request = self.validation.validate(request).await?;

        // MPSC channel to communicate with the background batching task
        let (response_tx, response_rx) = mpsc::unbounded_channel();

95
96
        // Append the request to the queue
        self.queue.append(Entry {
97
98
            request: valid_request,
            response_tx,
99
100
101
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
102
103
104
105
            batch_time: None,
            _permit: permit,
        });

106
        // Notify the background task that we have a new entry in the queue that needs
107
108
109
110
111
112
113
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
        Ok(UnboundedReceiverStream::new(response_rx))
    }

114
    /// Add a new request to the queue and return a InferResponse
115
    #[instrument(skip(self))]
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
        // Create stream
        let mut stream = self.generate_stream(request).await?;

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
142
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
                        .collect();
                }
                // Push last token
                InferStreamResponse::Token(token) => result_tokens.push(token),
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                } => {
                    result_tokens.push(token);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
            })
        } else {
175
            let err = InferError::IncompleteGeneration;
176
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
177
178
            tracing::error!("{err}");
            Err(err)
179
180
        }
    }
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
    #[instrument(skip(self))]
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
218
219
220
221
222
223
224
225
226
227
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
async fn batching_task(
    mut client: ShardedClient,
    max_batch_size: usize,
    max_waiting_tokens: usize,
228
    queue: Queue,
229
230
231
    shared: Arc<Shared>,
) {
    // Minimum batch size after which we try to add more requests
232
233
234
235
236
    let limit_min_batch_size = if max_batch_size > 1 {
        (max_batch_size / 2) as u32
    } else {
        0
    };
237
238
239
240
241
242

    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

243
        // Get the next batch from the queue
244
        // This batch might be smaller than the maximum batch size if there are not enough requests
245
        // waiting in the queue
246
        while let Some((mut entries, batch, span)) = queue.next_batch(None, max_batch_size).await {
247
            let mut cached_batch = prefill(&mut client, batch, &mut entries)
248
249
                .instrument(span)
                .await;
250
251
252
253
254
255
256
257
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
                let mut batches = vec![batch];
258
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
259
260
261
262
263
264
265
266
267
268
269
270

                // If the current batch is too small, we try to add more requests to it
                if batch_size <= limit_min_batch_size {
                    let min_size = match waiting_tokens {
                        // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                        // to add a new batch even though its size might be small
                        _ if waiting_tokens >= max_waiting_tokens => None,
                        // Minimum size criteria
                        _ => Some(limit_min_batch_size as usize),
                    };

                    // Try to get a new batch
271
                    if let Some((mut new_entries, new_batch, span)) = queue
272
273
                        .next_batch(min_size, max_batch_size - batch_size as usize)
                        .await
274
                    {
275
276
277
278
279
280
                        let new_batch_size = new_batch.size;
                        entries.iter_mut().for_each(|(_, entry)| {
                            // Create a new span to add the info that this entry is waiting
                            // because a new batch is being computed
                            let entry_waiting_span =
                                info_span!(parent: &entry.span, "waiting", batch_size = new_batch_size);
281
282
                            // Add relationships
                            span.follows_from(&entry_waiting_span);
283
284
285
286
287
                            entry_waiting_span.follows_from(&span);
                            // Update entry
                            entry.temp_span = Some(entry_waiting_span);
                        });

288
                        // Generate one token for this new batch to have the attention past in cache
289
290
291
                        let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries)
                            .instrument(span)
                            .await;
292
293
294
295
296
297
298
299
300
                        // Reset waiting counter
                        waiting_tokens = 1;
                        // Extend current batch with the new batch
                        if let Some(new_cached_batch) = new_cached_batch {
                            entries.extend(new_entries);
                            batches.push(new_cached_batch);
                        }
                    }
                }
301
302
303
304
305
306
307
308
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
                    let entry_batch_span =
                        info_span!(parent: &entry.span, "infer", batch_size = next_batch_size);
309
310
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
311
312
313
314
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
315

316
                cached_batch = decode(&mut client, batches, &mut entries)
317
318
                    .instrument(next_batch_span)
                    .await;
319
320
                waiting_tokens += 1;
            }
321
            metrics::gauge!("tgi_batch_current_size", 0.0);
322
323
324
325
        }
    }
}

326
#[instrument(skip_all)]
327
328
329
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
330
331
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
332
    let start_time = Instant::now();
333
    let batch_id = batch.id;
334
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
335
336
337
338

    match client.prefill(batch).await {
        Ok((generations, next_batch)) => {
            send_generations(generations, entries);
339
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
340
341
342
343
344
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
345
            let _ = client.clear_cache(Some(batch_id)).await;
346
347
348
349
350
351
352
353
354
355
356
357
358
359
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
    batches: Vec<Batch>,
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
    let start_time = Instant::now();
360
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
361
362

    match client.decode(batches).await {
363
364
        Ok((generations, next_batch)) => {
            send_generations(generations, entries);
365
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
366
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
367
368
369
370
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
371
            send_errors(err, entries);
372
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
373
374
375
376
377
378
            None
        }
    }
}

/// Send errors to Infer for all `entries`
379
380
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
381
    entries.drain().for_each(|(_, entry)| {
382
383
384
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
385
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
386
387
        tracing::error!("{err}");

388
389
390
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
391
            .send(Err(err))
392
393
394
395
396
            .unwrap_or(());
    });
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
397
#[instrument(skip_all)]
398
399
400
401
402
403
404
405
fn send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&generation.request_id)
            .expect("ID not found in entries. This is a bug.");

406
407
408
        // Create and enter a span to link this function back to the entry
        let _generation_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();

409
410
411
412
413
414
415
416
417
418
        if let Some(prefill_tokens) = generation.prefill_tokens {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))
                .unwrap_or(());
        }

        // Create last Token
419
420
421
422
        let token = Token {
            id: generation.token_id,
            text: generation.token_text,
            logprob: generation.token_logprob,
423
            special: generation.token_is_special,
424
        };
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

        if let Some(generated_text) = generation.generated_text {
            // Remove entry as this is the last message
            // We can `expect` here as the request id should always be in the entries
            let entry = entries
                .remove(&generation.request_id)
                .expect("ID not found in entries. This is a bug.");

            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::End {
                    token,
                    generated_text,
440
                    queued: entry.queue_time,
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
                    start: entry.batch_time.unwrap(),
                }))
                .unwrap_or(());
        } else {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Token(token)))
                .unwrap_or(());
        }
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
    Prefill(PrefillTokens),
    // Intermediate messages
    Token(Token),
    // Last message
    End {
        token: Token,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
472
    pub(crate) prefill: Vec<PrefillToken>,
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}
490
491
492
493
494
495
496
497
498
499
500

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
        }
    }
}