infer.rs 24.6 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
use crate::{Entry, Queue, Token};
4
use crate::{GenerateRequest, PrefillToken};
5
use futures::future::try_join_all;
6
use nohash_hasher::IntMap;
7
8
9
10
use std::sync::{
    atomic::{AtomicBool, Ordering},
    Arc,
};
11
use text_generation_client::{
Nicolas Patry's avatar
Nicolas Patry committed
12
    Batch, CachedBatch, ClientError, GeneratedText, Generation, ShardedClient, Tokens,
13
14
};
use thiserror::Error;
OlivierDehaene's avatar
OlivierDehaene committed
15
16
use tokio::sync::mpsc::error::SendError;
use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
17
use tokio::time::Instant;
OlivierDehaene's avatar
OlivierDehaene committed
18
19
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
20
use tracing::{info_span, instrument, Instrument, Span};
21
22
23
24
25
26

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
27
28
    /// Request queue
    queue: Queue,
29
30
31
32
33
34
35
36
37
38
39
40
41
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
42
    #[allow(clippy::too_many_arguments)]
43
44
45
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
46
        waiting_served_ratio: f32,
47
        max_batch_prefill_tokens: u32,
48
        max_batch_total_tokens: u32,
49
50
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
51
        requires_padding: bool,
52
        window_size: Option<u32>,
Nicolas Patry's avatar
Nicolas Patry committed
53
        speculate: u32,
54
        generation_health: Arc<AtomicBool>,
55
56
    ) -> Self {
        // Infer shared state
Nicolas Patry's avatar
Nicolas Patry committed
57
        let queue = Queue::new(requires_padding, 16, window_size, speculate);
58
59
60
61
62
63
64
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
65
            waiting_served_ratio,
66
            max_batch_prefill_tokens,
67
            max_batch_total_tokens,
68
            max_waiting_tokens,
69
            queue.clone(),
70
            shared.clone(),
71
            generation_health,
72
73
74
75
76
77
78
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
79
            queue,
80
81
82
83
84
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

85
    /// Add a new request to the queue and return a stream of InferStreamResponse
86
    #[instrument(skip_all)]
87
88
89
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
90
91
92
    ) -> Result<
        (
            OwnedSemaphorePermit,
OlivierDehaene's avatar
OlivierDehaene committed
93
            UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
94
95
96
        ),
        InferError,
    > {
97
        // Limit concurrent requests by acquiring a permit from the semaphore
98
99
100
101
102
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
103
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
104
105
106
                tracing::error!("{err}");
                err
            })?;
107
108

        // Validate request
109
110
111
112
113
        let valid_request = self.validation.validate(request).await.map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            err
        })?;
114
115

        // MPSC channel to communicate with the background batching task
OlivierDehaene's avatar
OlivierDehaene committed
116
        let (response_tx, response_rx) = mpsc::unbounded_channel();
117

118
119
        // Append the request to the queue
        self.queue.append(Entry {
120
121
            request: valid_request,
            response_tx,
122
123
124
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
125
126
127
            batch_time: None,
        });

128
        // Notify the background task that we have a new entry in the queue that needs
129
130
131
132
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
OlivierDehaene's avatar
OlivierDehaene committed
133
        Ok((permit, UnboundedReceiverStream::new(response_rx)))
134
135
    }

136
    /// Add a new request to the queue and return a InferResponse
137
    #[instrument(skip_all)]
138
139
140
141
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
Nicolas Patry's avatar
Nicolas Patry committed
142
143
        let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);

144
145
        // Create stream and keep semaphore permit as long as generate lives
        let (_permit, mut stream) = self.generate_stream(request).await?;
146
147
148
149

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
Nicolas Patry's avatar
Nicolas Patry committed
150
        let mut result_top_tokens = Vec::new();
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
167
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
168
169
170
                        .collect();
                }
                // Push last token
Nicolas Patry's avatar
Nicolas Patry committed
171
172
173
174
                InferStreamResponse::Intermediate { token, top_tokens } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                }
175
176
177
178
179
180
181
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
Nicolas Patry's avatar
Nicolas Patry committed
182
                    top_tokens,
183
184
                } => {
                    result_tokens.push(token);
Nicolas Patry's avatar
Nicolas Patry committed
185
                    result_top_tokens.push(top_tokens);
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
Nicolas Patry's avatar
Nicolas Patry committed
203
204
205
206
207
                top_tokens: if use_top_tokens {
                    result_top_tokens
                } else {
                    Vec::new()
                },
208
209
            })
        } else {
210
            let err = InferError::IncompleteGeneration;
211
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
212
213
            tracing::error!("{err}");
            Err(err)
214
215
        }
    }
216
217
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
218
    #[instrument(skip(self, request))]
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
253
254
255
256
257
258
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
259
#[allow(clippy::too_many_arguments)]
260
261
async fn batching_task(
    mut client: ShardedClient,
262
    waiting_served_ratio: f32,
263
    max_batch_prefill_tokens: u32,
264
    max_batch_total_tokens: u32,
265
    max_waiting_tokens: usize,
266
    queue: Queue,
267
    shared: Arc<Shared>,
268
    generation_health: Arc<AtomicBool>,
269
270
271
272
273
274
) {
    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

275
        // Get the next batch from the queue
276
        // This batch might be smaller than the maximum batch size if there are not enough requests
277
        // waiting in the queue
278
279
280
        while let Some((mut entries, batch, span)) = queue
            .next_batch(None, max_batch_prefill_tokens, max_batch_total_tokens)
            .await
281
        {
282
            let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
283
284
                .instrument(span)
                .await;
285
286
287
288
289
290
291
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
292
                let batch_max_tokens = batch.max_tokens;
293
                let mut batches = vec![batch];
294
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
295
296
297
298
299
300
301
302
303
304
305
                metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);

                let min_size = if waiting_tokens >= max_waiting_tokens {
                    // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                    // to add a new batch even though its size might be small
                    None
                } else {
                    // Minimum batch size
                    Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
                };

306
                let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
307
308

                // Try to get a new batch
309
310
311
                if let Some((mut new_entries, new_batch, span)) = queue
                    .next_batch(min_size, max_batch_prefill_tokens, token_budget)
                    .await
312
313
314
315
316
317
318
                {
                    // Tracking metrics
                    if min_size.is_some() {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
                    } else {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
                    }
319

320
321
322
323
324
325
326
327
328
329
330
331
                    entries.iter_mut().for_each(|(_, entry)| {
                        // Create a new span to add the info that this entry is waiting
                        // because a new batch is being computed
                        let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
                        // Add relationships
                        span.follows_from(&entry_waiting_span);
                        entry_waiting_span.follows_from(&span);
                        // Update entry
                        entry.temp_span = Some(entry_waiting_span);
                    });

                    // Generate one token for this new batch to have the attention past in cache
332
333
334
335
                    let new_cached_batch =
                        prefill(&mut client, new_batch, &mut new_entries, &generation_health)
                            .instrument(span)
                            .await;
336
337
338
339
340
341
                    // Reset waiting counter
                    waiting_tokens = 1;
                    // Extend current batch with the new batch
                    if let Some(new_cached_batch) = new_cached_batch {
                        entries.extend(new_entries);
                        batches.push(new_cached_batch);
342
343
                    }
                }
344

345
346
347
348
349
350
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
351
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
352
353
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
354
355
356
357
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
358

359
                cached_batch = decode(&mut client, batches, &mut entries, &generation_health)
360
361
                    .instrument(next_batch_span)
                    .await;
362
363
                waiting_tokens += 1;
            }
364
            metrics::gauge!("tgi_batch_current_size", 0.0);
365
            metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
366
367
368
369
        }
    }
}

370
#[instrument(skip_all)]
371
372
373
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
374
    entries: &mut IntMap<u64, Entry>,
375
    generation_health: &Arc<AtomicBool>,
376
) -> Option<CachedBatch> {
377
    let start_time = Instant::now();
378
    let batch_id = batch.id;
379
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
380
381

    match client.prefill(batch).await {
382
        Ok((generations, next_batch, timings)) => {
383
384
            // Update health
            generation_health.store(true, Ordering::SeqCst);
385
386

            let start_filtering_time = Instant::now();
387
            // Send generated tokens and filter stopped entries
388
389
390
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
391
            let next_batch = filter_batch(client, next_batch, entries).await;
392

393
394
395
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill");
396
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
397
398
399
400
401
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
402
403
            // Update health
            generation_health.store(false, Ordering::SeqCst);
404
            let _ = client.clear_cache(Some(batch_id)).await;
405
406
407
408
409
410
411
412
413
414
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
415
    batches: Vec<CachedBatch>,
416
    entries: &mut IntMap<u64, Entry>,
417
    generation_health: &Arc<AtomicBool>,
418
) -> Option<CachedBatch> {
419
    let start_time = Instant::now();
420
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
421
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
422
423

    match client.decode(batches).await {
424
        Ok((generations, next_batch, timings)) => {
425
426
            // Update health
            generation_health.store(true, Ordering::SeqCst);
427
428

            let start_filtering_time = Instant::now();
429
            // Send generated tokens and filter stopped entries
430
431
432
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
433
            let next_batch = filter_batch(client, next_batch, entries).await;
434

435
436
437
438
439
440
            if let Some(concat_duration) = timings.concat {
                metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode");
            }
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode");
441
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
442
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
443
444
445
446
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
447
            generation_health.store(false, Ordering::SeqCst);
448
449
450
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
451
            send_errors(err, entries);
452
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
453
454
455
456
457
            None
        }
    }
}

458
459
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
460
461
async fn filter_batch(
    client: &mut ShardedClient,
462
    next_batch: Option<CachedBatch>,
463
    entries: &IntMap<u64, Entry>,
464
) -> Option<CachedBatch> {
465
466
467
468
469
470
471
472
473
474
    let mut batch = next_batch?;

    // No need to filter
    if batch.size as usize == entries.len() {
        return Some(batch);
    }

    let id = batch.id;

    // Retain only requests that are still in entries
475
    batch.request_ids.retain(|id| entries.contains_key(id));
476

477
    if batch.request_ids.is_empty() {
478
479
480
481
482
483
484
485
486
        // All requests have been filtered out
        // Next batch is now empty
        // Clear it from the Python shards cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.clear_cache(Some(id)).await.unwrap();
        None
    } else {
        // Filter Python shard cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
487
        client.filter_batch(id, batch.request_ids).await.unwrap()
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    }
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
OlivierDehaene's avatar
OlivierDehaene committed
509
            tracing::error!("Entry response channel error.");
510
511
512
513
514
515
516
517
518
519
520
521
522
            metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
OlivierDehaene's avatar
OlivierDehaene committed
523
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
524
    // Return directly if the channel is disconnected
OlivierDehaene's avatar
OlivierDehaene committed
525
526
    if entry.response_tx.is_closed() {
        metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
527
528
529
        return Ok(true);
    }

530
531
532
533
    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Send message
OlivierDehaene's avatar
OlivierDehaene committed
534
535
536
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
537
538
539
    }

    // Create last Token
Nicolas Patry's avatar
Nicolas Patry committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    let tokens_ = generation.tokens.expect("Non empty tokens in generation");
    let n = tokens_.ids.len();
    metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64);
    let mut iterator = tokens_
        .ids
        .into_iter()
        .zip(tokens_.logprobs.into_iter())
        .zip(tokens_.texts.into_iter())
        .zip(tokens_.is_special.into_iter())
        .enumerate()
        .peekable();
    while let Some((i, (((id, logprob), text), special))) = iterator.next() {
        let token = Token {
            id,
            text,
            logprob,
            special,
        };
        let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) {
Nicolas Patry's avatar
Nicolas Patry committed
559
560
            top_tokens_
                .ids
Nicolas Patry's avatar
Nicolas Patry committed
561
562
563
564
565
                .iter()
                .zip(top_tokens_.logprobs.iter())
                .zip(top_tokens_.texts.iter())
                .zip(top_tokens_.is_special.iter())
                .map(|(((&id, &logprob), text), &special)| Token {
Nicolas Patry's avatar
Nicolas Patry committed
566
                    id,
Nicolas Patry's avatar
Nicolas Patry committed
567
                    text: text.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
568
569
                    logprob,
                    special,
Nicolas Patry's avatar
Nicolas Patry committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
                })
                .collect()
        } else {
            vec![]
        };
        match (&generation.generated_text, iterator.peek()) {
            (Some(generated_text), None) => {
                // Generation has ended
                stopped = true;
                // Send message
                entry.response_tx.send(Ok(InferStreamResponse::End {
                    token,
                    top_tokens,
                    generated_text: generated_text.clone(),
                    queued: entry.queue_time,
                    start: entry.batch_time.unwrap(),
                }))?;
            }
            _ => {
                // Send message
                entry
                    .response_tx
                    .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?;
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
595
596
    }

597
598
599
    Ok(stopped)
}

600
/// Send errors to Infer for all `entries`
601
602
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
603
    entries.drain().for_each(|(_, entry)| {
604
605
606
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
607
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
608
609
        tracing::error!("{err}");

610
611
612
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
OlivierDehaene's avatar
OlivierDehaene committed
613
            .send(Err(err))
614
615
616
617
618
619
620
            .unwrap_or(());
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
Nicolas Patry's avatar
Nicolas Patry committed
621
    Prefill(Tokens),
622
    // Intermediate messages
Nicolas Patry's avatar
Nicolas Patry committed
623
624
625
626
    Intermediate {
        token: Token,
        top_tokens: Vec<Token>,
    },
627
628
629
    // Last message
    End {
        token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
630
        top_tokens: Vec<Token>,
631
632
633
634
635
636
637
638
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
639
    pub(crate) prefill: Vec<PrefillToken>,
640
641
642
643
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
Nicolas Patry's avatar
Nicolas Patry committed
644
    pub(crate) top_tokens: Vec<Vec<Token>>,
645
646
647
648
649
650
651
652
653
654
655
656
657
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}
658
659
660
661
662
663
664
665
666
667
668

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
        }
    }
}