lib.rs 38.3 KB
Newer Older
1
pub mod config;
2
mod health;
3
/// Text Generation Inference Webserver
4
mod infer;
5
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
6
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
7
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
8

9
use infer::{Infer, InferError, InferStreamResponse};
10
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
use serde::{Deserialize, Serialize};
12
13
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
14
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
15
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
19
20
21
22
23
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

drbh's avatar
drbh committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

43
44
/// Hub type
#[derive(Clone, Debug, Deserialize)]
45
pub struct HubModelInfo {
46
47
48
49
50
51
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

52
53
54
55
56
57
58
59
60
61
62
63
64
65
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
66
pub struct HubTokenizerConfig {
67
    pub chat_template: Option<ChatTemplateVersions>,
68
    pub completion_template: Option<String>,
69
    #[serde(deserialize_with = "token_serde::deserialize")]
70
    pub bos_token: Option<String>,
71
    #[serde(deserialize_with = "token_serde::deserialize")]
72
    pub eos_token: Option<String>,
73
74
75
}

impl HubTokenizerConfig {
76
77
78
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
79
80
81
    }
}

82
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
83
84
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
85
86
87
88
89
90
91
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
92
93
94
95
    #[serde(rename = "regex")]
    Regex(String),
}

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
119
            Value::Null => Ok(None),
120
121
122
123
124
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

125
126
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
127
    /// Model info
128
129
130
131
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
132
133
134
135
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
136
137
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
155
156
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
157
158
    #[schema(example = "2")]
    pub validation_workers: usize,
159
160
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
161
    /// Router Info
162
163
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
164
165
166
167
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
168
169
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
170
171
}

drbh's avatar
drbh committed
172
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
173
pub(crate) struct GenerateParameters {
174
    /// Generate best_of sequences and return the one if the highest token logprobs.
175
176
177
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
178
179

    /// The value used to module the logits distribution.
180
181
182
183
184
185
186
187
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
188
189
190

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
191
192
193
194
195
196
197
198
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
199
200
201
202

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
203
    #[serde(default)]
204
205
206
207
208
209
210
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
211
212

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
213
    #[serde(default)]
214
215
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
216
217

    /// Top-p value for nucleus sampling.
218
219
220
221
222
223
224
225
226
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
227
228
229

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
230
    #[serde(default)]
231
232
233
234
235
236
237
238
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
239
240

    /// Activate logits sampling.
241
    #[serde(default)]
242
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
243
    pub do_sample: bool,
244
245

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
246
    #[serde(default = "default_max_new_tokens")]
247
    #[schema(nullable = true, default = "100", example = "20")]
248
    pub max_new_tokens: Option<u32>,
249
250

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
251
    #[serde(default)]
252
    #[schema(nullable = true, default = "null", example = false)]
253
    pub return_full_text: Option<bool>,
254
255

    /// Stop generating tokens if a member of `stop` is generated.
256
    #[serde(default)]
257
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
258
    pub stop: Vec<String>,
259
260

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
261
    #[serde(default)]
262
    #[schema(nullable = true, default = "null", example = "null")]
263
    pub truncate: Option<usize>,
264
265

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
266
    #[serde(default)]
267
268
    #[schema(default = "false", example = true)]
    pub watermark: bool,
269
270

    /// Whether to return generation details.
271
    #[serde(default)]
272
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
273
    pub details: bool,
274
275

    /// Whether to return decoder input token logprobs and ids.
276
    #[serde(default)]
277
    #[schema(default = "false")]
278
    pub decoder_input_details: bool,
279
280

    /// Random sampling seed.
281
    #[serde(default)]
282
283
284
285
286
287
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
288
    pub seed: Option<u64>,
289
290

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
291
292
293
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
294
295

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
296
    #[serde(default)]
297
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
298
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
299
300
}

301
fn default_max_new_tokens() -> Option<u32> {
302
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
303
304
305
306
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
307
        best_of: None,
308
309
        temperature: None,
        repetition_penalty: None,
310
        frequency_penalty: None,
311
312
        top_k: None,
        top_p: None,
313
        typical_p: None,
314
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
315
        max_new_tokens: default_max_new_tokens(),
316
        return_full_text: None,
317
        stop: Vec::new(),
318
        truncate: None,
319
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
320
        details: false,
321
        decoder_input_details: false,
322
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
323
        top_n_tokens: None,
drbh's avatar
drbh committed
324
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
325
326
327
    }
}

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
mod prompt_serde {
    use serde::{self, Deserialize, Deserializer};
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(vec![s]),
            Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
                "Empty array detected. Do not use an empty array for the prompt.",
            )),
            Value::Array(arr) => arr
                .iter()
                .map(|v| match v {
                    Value::String(s) => Ok(s.to_owned()),
                    _ => Err(serde::de::Error::custom("Expected a string")),
                })
                .collect(),
            _ => Err(serde::de::Error::custom(
                "Expected a string or an array of strings",
            )),
        }
    }
}

356
357
358
359
360
361
362
363
364
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
365
366
    #[serde(deserialize_with = "prompt_serde::deserialize")]
    pub prompt: Vec<String>,
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

427
#[derive(Clone, Deserialize, Serialize, ToSchema)]
428
429
430
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
431
    #[schema(example = "1706270835")]
432
    pub created: u64,
433
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
434
435
436
437
438
439
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

440
#[derive(Clone, Deserialize, Serialize, ToSchema)]
441
442
443
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: Message,
444
    pub logprobs: Option<ChatCompletionLogprobs>,
445
446
447
    pub finish_reason: String,
}

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
491
492
493
494
495
496
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
497
498
499
500
501
502
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

519
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
520
521
522
523
524
525
526
527
528
529
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
530
        output: Option<String>,
531
532
533
        created: u64,
        details: Details,
        return_logprobs: bool,
534
        tool_calls: Option<Vec<ToolCall>>,
535
536
537
538
539
540
541
542
543
544
545
546
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message: Message {
                    role: "assistant".into(),
                    content: output,
547
                    name: None,
drbh's avatar
drbh committed
548
                    tool_calls,
549
550
                },
                logprobs: return_logprobs
551
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
552
553
554
555
556
557
558
559
560
561
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
562
563
564
565
566
567
568
569
570
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
571
#[derive(Clone, Deserialize, Serialize, ToSchema)]
572
573
574
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
575
    #[schema(example = "1706270978")]
576
    pub created: u64,
577
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
578
579
580
581
582
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

583
#[derive(Clone, Deserialize, Serialize, ToSchema)]
584
585
586
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
587
    pub logprobs: Option<ChatCompletionLogprobs>,
588
589
590
    pub finish_reason: Option<String>,
}

591
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
592
pub(crate) struct ChatCompletionDelta {
593
    #[schema(example = "user")]
594
595
596
    // TODO Modify this to a true enum.
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub role: Option<String>,
drbh's avatar
drbh committed
597
    #[serde(default, skip_serializing_if = "Option::is_none")]
598
    #[schema(example = "What is Deep Learning?")]
drbh's avatar
drbh committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    pub content: Option<String>,
    // default to None
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub tool_calls: Option<DeltaToolCall>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
617
618
}

drbh's avatar
drbh committed
619
#[allow(clippy::too_many_arguments)]
620
621
622
623
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
624
625
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
626
        created: u64,
627
        logprobs: Option<ChatCompletionLogprobs>,
628
629
        finish_reason: Option<String>,
    ) -> Self {
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        let delta = match (delta, tool_calls) {
            (Some(delta), _) => ChatCompletionDelta {
                role: Some("assistant".to_string()),
                content: Some(delta),
                tool_calls: None,
            },
            (None, Some(tool_calls)) => ChatCompletionDelta {
                role: Some("assistant".to_string()),
                content: None,
                tool_calls: Some(DeltaToolCall {
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
                }),
            },
            (None, None) => ChatCompletionDelta {
                role: None,
                content: None,
                tool_calls: None,
            },
        };
655
656
657
658
659
660
661
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
662
                index: 0,
663
                delta,
664
665
666
667
668
669
670
671
672
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
673
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
674
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
675
    pub model: String,
drbh's avatar
drbh committed
676

677
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
678
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
679
680
681
682
683
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
684
    #[schema(example = "1.0")]
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
699
    #[schema(example = "false")]
700
701
702
703
704
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
705
    #[schema(example = "5")]
706
707
708
709
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
710
    #[schema(example = "32")]
711
712
713
714
715
716
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
717
    #[schema(nullable = true, example = "2")]
718
719
720
721
722
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
723
    #[schema(nullable = true, example = 0.1)]
724
725
    pub presence_penalty: Option<f32>,

726
727
728
729
730
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

731
732
733
734
735
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
736
737
738
739
740
741

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
742
    #[schema(nullable = true, example = 1.0)]
743
744
745
746
747
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
748
    #[schema(nullable = true, example = 0.95)]
749
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
750
751
752
753
754
755
756
757
758
759
760

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
761
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
762
763
764
765
766
767
768
769
770
771
772
773
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
}

fn default_tool_prompt() -> Option<String> {
    Some(
774
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

819
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
820
821
822
823
824
825
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

826
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
827
828
829
830
831
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

832
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
833
834
835
836
837
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

838
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
859
860
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
861
862
863
864
865
866
867
868
869
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
870
871
}

872
#[derive(Clone, Serialize, Deserialize, Default)]
873
874
875
876
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<Message>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
877
    add_generation_prompt: bool,
878
879
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
880
881
}

drbh's avatar
drbh committed
882
883
884
885
886
887
888
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)]
pub(crate) struct ToolCall {
    pub id: u32,
    pub r#type: String,
    pub function: FunctionDefinition,
}

drbh's avatar
drbh committed
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)]
pub(crate) struct Text {
    #[serde(default)]
    pub text: String,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)]
pub(crate) struct ImageUrl {
    #[serde(default)]
    pub url: String,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)]
pub(crate) struct Content {
    pub r#type: String,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub text: Option<String>,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub image_url: Option<ImageUrl>,
}

mod message_content_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Array(arr) => {
                let results: Result<Vec<String>, _> = arr
                    .into_iter()
                    .map(|v| {
                        let content: Content =
                            serde_json::from_value(v).map_err(de::Error::custom)?;
                        match content.r#type.as_str() {
                            "text" => Ok(content.text.unwrap_or_default()),
                            "image_url" => {
                                if let Some(url) = content.image_url {
                                    Ok(format!("![]({})", url.url))
                                } else {
                                    Ok(String::new())
                                }
                            }
                            _ => Err(de::Error::custom("invalid content type")),
                        }
                    })
                    .collect();

                results.map(|strings| Some(strings.join("")))
            }
            Value::Null => Ok(None),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug)]
952
953
954
pub(crate) struct Message {
    #[schema(example = "user")]
    pub role: String,
drbh's avatar
drbh committed
955
    #[serde(skip_serializing_if = "Option::is_none")]
956
    #[schema(example = "My name is David and I")]
drbh's avatar
drbh committed
957
    #[serde(deserialize_with = "message_content_serde::deserialize")]
drbh's avatar
drbh committed
958
    pub content: Option<String>,
drbh's avatar
drbh committed
959
    #[serde(default, skip_serializing_if = "Option::is_none")]
960
961
    #[schema(example = "\"David\"")]
    pub name: Option<String>,
drbh's avatar
drbh committed
962
    #[serde(default, skip_serializing_if = "Option::is_none")]
963
    pub tool_calls: Option<Vec<ToolCall>>,
964
965
}

966
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
967
pub(crate) struct GenerateRequest {
968
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
969
970
971
972
973
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

974
975
976
977
978
979
980
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
981
    #[schema(default = "false")]
982
983
984
985
986
987
988
989
990
991
992
993
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

994
995
996
997
998
999
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1000
    #[schema(nullable = true, example = - 0.34)]
1001
1002
1003
    logprob: f32,
}

1004
#[derive(Debug, Serialize, ToSchema, Clone)]
1005
1006
1007
1008
1009
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1010
    #[schema(nullable = true, example = - 0.34)]
1011
    logprob: f32,
1012
1013
    #[schema(example = "false")]
    special: bool,
1014
1015
}

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

1028
1029
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
1030
#[schema(example = "Length")]
1031
1032
1033
1034
1035
1036
1037
1038
1039
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1063
1064
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1065
1066
}

1067
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1068
pub(crate) struct Details {
1069
1070
1071
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1072
    pub generated_tokens: u32,
1073
    #[schema(nullable = true, example = 42)]
1074
    pub seed: Option<u64>,
1075
1076
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1077
1078
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1079
1080
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1081
1082
}

1083
#[derive(Serialize, ToSchema)]
1084
pub(crate) struct GenerateResponse {
1085
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1086
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1087
1088
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1089
}
1090

1091
1092
1093
1094
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1095
1096
1097
1098
1099
1100
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1101
    #[schema(nullable = true, example = 42)]
1102
1103
1104
1105
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1106
pub(crate) struct StreamResponse {
1107
    pub index: u32,
1108
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1109
1110
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1111
    #[schema(nullable = true, default = "null", example = "test")]
1112
    pub generated_text: Option<String>,
1113
1114
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1115
1116
}

1117
#[derive(Serialize, ToSchema)]
1118
1119
pub(crate) struct ErrorResponse {
    pub error: String,
1120
    pub error_type: String,
1121
}
1122
1123

#[cfg(test)]
1124
mod tests {
1125
1126
    use super::*;

1127
1128
    use tokenizers::Tokenizer;

1129
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1130
1131
1132
1133
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1134
    }
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1149
1150
1151
1152
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1184
1185
1186
1187
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1188
1189
1190
1191
1192
1193
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
1194
}