infer.rs 34.1 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
4
5
6
use crate::{
    ChatTemplateInputs, Entry, GenerateRequest, GenerateStreamResponse, HubTokenizerConfig,
    Message, PrefillToken, Queue, Token,
};
7
use futures::future::try_join_all;
8
use minijinja::{Environment, ErrorKind, Template};
9
use nohash_hasher::IntMap;
10
11
12
13
use std::sync::{
    atomic::{AtomicBool, Ordering},
    Arc,
};
14
use text_generation_client::{
Nicolas Patry's avatar
Nicolas Patry committed
15
    Batch, CachedBatch, ClientError, GeneratedText, Generation, ShardedClient, Tokens,
16
17
};
use thiserror::Error;
OlivierDehaene's avatar
OlivierDehaene committed
18
use tokio::sync::mpsc::error::SendError;
19
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
20
use tokio::time::Instant;
OlivierDehaene's avatar
OlivierDehaene committed
21
22
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
23
use tracing::{info_span, instrument, Instrument, Span};
24
25
26
27
28
29

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
30
31
    /// Request queue
    queue: Queue,
32
33
34
35
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
36
37
38
39
40
41
    /// Chat template (template, bos_token, eos_token)
    template: (
        Option<Template<'static, 'static>>,
        Option<String>,
        Option<String>,
    ),
42
43
44
45
46
47
48
49
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

50
51
52
53
54
/// Raise a exception (custom function) used in the chat templates
fn raise_exception(err_text: String) -> Result<String, minijinja::Error> {
    Err(minijinja::Error::new(ErrorKind::SyntaxError, err_text))
}

55
impl Infer {
56
    #[allow(clippy::too_many_arguments)]
57
58
59
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
60
        waiting_served_ratio: f32,
61
        max_batch_prefill_tokens: u32,
62
        max_batch_total_tokens: u32,
63
64
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
65
        requires_padding: bool,
66
        window_size: Option<u32>,
Nicolas Patry's avatar
Nicolas Patry committed
67
        speculate: u32,
68
        generation_health: Arc<AtomicBool>,
69
        tokenizer_config: HubTokenizerConfig,
70
71
    ) -> Self {
        // Infer shared state
Nicolas Patry's avatar
Nicolas Patry committed
72
        let queue = Queue::new(requires_padding, 16, window_size, speculate);
73
74
75
76
77
78
79
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
80
            waiting_served_ratio,
81
            max_batch_prefill_tokens,
82
            max_batch_total_tokens,
83
            max_waiting_tokens,
84
            queue.clone(),
85
            shared.clone(),
86
            generation_health,
87
88
89
90
91
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

92
        let template = tokenizer_config.chat_template.map(|t| {
93
            let mut env = Box::new(Environment::new());
94
            let template_str = t.into_boxed_str();
95
            env.add_function("raise_exception", raise_exception);
96
97
98
99
100
            // leaking env and template_str as read-only, static resources for performance.
            Box::leak(env)
                .template_from_str(Box::leak(template_str))
                .unwrap()
        });
101
102
103
104
105
106
107
108
        let eos_token = tokenizer_config
            .eos_token
            .map_or_else(String::new, |t| t)
            .into();
        let bos_token = tokenizer_config
            .bos_token
            .map_or_else(String::new, |t| t)
            .into();
109
110
        Self {
            validation,
111
            queue,
112
113
            shared,
            limit_concurrent_requests: semaphore,
114
            template: (template, eos_token, bos_token),
115
116
117
        }
    }

118
    /// Add a new request to the queue and return a stream of InferStreamResponse
119
    #[instrument(skip_all)]
120
121
122
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
123
    ) -> Result<GenerateStreamResponse, InferError> {
124
        // Limit concurrent requests by acquiring a permit from the semaphore
125
126
127
128
129
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
130
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
131
132
133
                tracing::error!("{err}");
                err
            })?;
134
135

        // Validate request
136
137
138
139
140
        let valid_request = self.validation.validate(request).await.map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            err
        })?;
141
142

        // MPSC channel to communicate with the background batching task
OlivierDehaene's avatar
OlivierDehaene committed
143
        let (response_tx, response_rx) = mpsc::unbounded_channel();
144
        let input_length = valid_request.input_length;
145

146
147
        // Append the request to the queue
        self.queue.append(Entry {
148
149
            request: valid_request,
            response_tx,
150
151
152
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
153
154
155
            batch_time: None,
        });

156
        // Notify the background task that we have a new entry in the queue that needs
157
158
159
160
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
161
162
163
164
165
        Ok((
            permit,
            input_length,
            UnboundedReceiverStream::new(response_rx),
        ))
166
167
    }

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    /// Tokenizer the input
    #[instrument(skip_all)]
    pub(crate) async fn tokenize(
        &self,
        request: GenerateRequest,
    ) -> Result<Option<tokenizers::Encoding>, InferError> {
        // Tokenize request
        let inputs = request.inputs;
        let truncate = request.parameters.truncate;
        let encoding = self
            .validation
            .tokenize(inputs, truncate)
            .await
            .map_err(|err| {
                tracing::error!("Tokenization {err}");
                err
            })?;

        // Return Encoding
        Ok(encoding.map(|(encoding, _)| encoding))
    }

190
191
    /// Apply the chat template to the chat request
    #[instrument(skip_all)]
192
193
194
    pub(crate) fn apply_chat_template(&self, messages: Vec<Message>) -> Result<String, InferError> {
        let (template, bos_token, eos_token) = &self.template;
        template
195
196
            .as_ref()
            .ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
197
198
199
200
201
            .render(ChatTemplateInputs {
                messages,
                eos_token: eos_token.as_deref(),
                bos_token: bos_token.as_deref(),
            })
202
203
204
205
206
207
208
            .map_err(|e| {
                metrics::increment_counter!("tgi_request_failure", "err" => "template");
                tracing::error!("{e}");
                InferError::TemplateError(e)
            })
    }

209
    /// Add a new request to the queue and return a InferResponse
210
    #[instrument(skip_all)]
211
212
213
214
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
Nicolas Patry's avatar
Nicolas Patry committed
215
216
        let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);

217
        // Create stream and keep semaphore permit as long as generate lives
218
        let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
219
220
221
222

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
Nicolas Patry's avatar
Nicolas Patry committed
223
        let mut result_top_tokens = Vec::new();
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
240
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
241
242
243
                        .collect();
                }
                // Push last token
Nicolas Patry's avatar
Nicolas Patry committed
244
245
246
247
                InferStreamResponse::Intermediate { token, top_tokens } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                }
248
249
250
251
252
253
254
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
Nicolas Patry's avatar
Nicolas Patry committed
255
                    top_tokens,
256
257
                } => {
                    result_tokens.push(token);
Nicolas Patry's avatar
Nicolas Patry committed
258
                    result_top_tokens.push(top_tokens);
259
260
261
262
263
264
265
266
267
268
269
270
271
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
272
                _input_length,
273
274
275
276
                tokens: result_tokens,
                generated_text,
                queued,
                start,
Nicolas Patry's avatar
Nicolas Patry committed
277
278
279
280
281
                top_tokens: if use_top_tokens {
                    result_top_tokens
                } else {
                    Vec::new()
                },
282
283
            })
        } else {
284
            let err = InferError::IncompleteGeneration;
285
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
286
287
            tracing::error!("{err}");
            Err(err)
288
289
        }
    }
290
291
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
292
    #[instrument(skip(self, request))]
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
327
328
329
330
331
332
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
333
#[allow(clippy::too_many_arguments)]
334
335
async fn batching_task(
    mut client: ShardedClient,
336
    waiting_served_ratio: f32,
337
    max_batch_prefill_tokens: u32,
338
    max_batch_total_tokens: u32,
339
    max_waiting_tokens: usize,
340
    queue: Queue,
341
    shared: Arc<Shared>,
342
    generation_health: Arc<AtomicBool>,
343
344
345
346
347
348
) {
    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

349
        // Get the next batch from the queue
350
        // This batch might be smaller than the maximum batch size if there are not enough requests
351
        // waiting in the queue
352
353
354
        while let Some((mut entries, batch, span)) = queue
            .next_batch(None, max_batch_prefill_tokens, max_batch_total_tokens)
            .await
355
        {
356
            let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
357
358
                .instrument(span)
                .await;
359
360
361
362
363
364
365
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
366
                let batch_max_tokens = batch.max_tokens;
367
                let mut batches = vec![batch];
368
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
369
370
371
372
373
374
375
376
377
378
379
                metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);

                let min_size = if waiting_tokens >= max_waiting_tokens {
                    // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                    // to add a new batch even though its size might be small
                    None
                } else {
                    // Minimum batch size
                    Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
                };

380
                let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
381
382

                // Try to get a new batch
383
384
385
                if let Some((mut new_entries, new_batch, span)) = queue
                    .next_batch(min_size, max_batch_prefill_tokens, token_budget)
                    .await
386
387
388
389
390
391
392
                {
                    // Tracking metrics
                    if min_size.is_some() {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
                    } else {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
                    }
393

394
395
396
397
398
399
400
401
402
403
404
405
                    entries.iter_mut().for_each(|(_, entry)| {
                        // Create a new span to add the info that this entry is waiting
                        // because a new batch is being computed
                        let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
                        // Add relationships
                        span.follows_from(&entry_waiting_span);
                        entry_waiting_span.follows_from(&span);
                        // Update entry
                        entry.temp_span = Some(entry_waiting_span);
                    });

                    // Generate one token for this new batch to have the attention past in cache
406
407
408
409
                    let new_cached_batch =
                        prefill(&mut client, new_batch, &mut new_entries, &generation_health)
                            .instrument(span)
                            .await;
410
411
412
413
414
415
                    // Reset waiting counter
                    waiting_tokens = 1;
                    // Extend current batch with the new batch
                    if let Some(new_cached_batch) = new_cached_batch {
                        entries.extend(new_entries);
                        batches.push(new_cached_batch);
416
417
                    }
                }
418

419
420
421
422
423
424
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
425
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
426
427
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
428
429
430
431
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
432

433
                cached_batch = decode(&mut client, batches, &mut entries, &generation_health)
434
435
                    .instrument(next_batch_span)
                    .await;
436
437
                waiting_tokens += 1;
            }
438
            metrics::gauge!("tgi_batch_current_size", 0.0);
439
            metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
440
441
442
443
        }
    }
}

444
#[instrument(skip_all)]
445
446
447
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
448
    entries: &mut IntMap<u64, Entry>,
449
    generation_health: &Arc<AtomicBool>,
450
) -> Option<CachedBatch> {
451
    let start_time = Instant::now();
452
    let batch_id = batch.id;
453
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
454
455

    match client.prefill(batch).await {
456
        Ok((generations, next_batch, timings)) => {
457
458
            // Update health
            generation_health.store(true, Ordering::SeqCst);
459
460

            let start_filtering_time = Instant::now();
461
            // Send generated tokens and filter stopped entries
462
463
464
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
465
            let next_batch = filter_batch(client, next_batch, entries).await;
466

467
468
469
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill");
470
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
471
472
473
474
475
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
476
477
            // Update health
            generation_health.store(false, Ordering::SeqCst);
478
            let _ = client.clear_cache(Some(batch_id)).await;
479
480
481
482
483
484
485
486
487
488
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
489
    batches: Vec<CachedBatch>,
490
    entries: &mut IntMap<u64, Entry>,
491
    generation_health: &Arc<AtomicBool>,
492
) -> Option<CachedBatch> {
493
    let start_time = Instant::now();
494
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
495
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
496
497

    match client.decode(batches).await {
498
        Ok((generations, next_batch, timings)) => {
499
500
            // Update health
            generation_health.store(true, Ordering::SeqCst);
501
502

            let start_filtering_time = Instant::now();
503
            // Send generated tokens and filter stopped entries
504
505
506
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
507
            let next_batch = filter_batch(client, next_batch, entries).await;
508

509
510
511
512
513
514
            if let Some(concat_duration) = timings.concat {
                metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode");
            }
            metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode");
            metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode");
515
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
516
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
517
518
519
520
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
521
            generation_health.store(false, Ordering::SeqCst);
522
523
524
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
525
            send_errors(err, entries);
526
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
527
528
529
530
531
            None
        }
    }
}

532
533
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
534
535
async fn filter_batch(
    client: &mut ShardedClient,
536
    next_batch: Option<CachedBatch>,
537
    entries: &IntMap<u64, Entry>,
538
) -> Option<CachedBatch> {
539
540
541
542
543
544
545
546
547
548
    let mut batch = next_batch?;

    // No need to filter
    if batch.size as usize == entries.len() {
        return Some(batch);
    }

    let id = batch.id;

    // Retain only requests that are still in entries
549
    batch.request_ids.retain(|id| entries.contains_key(id));
550

551
    if batch.request_ids.is_empty() {
552
553
554
555
556
557
558
559
560
        // All requests have been filtered out
        // Next batch is now empty
        // Clear it from the Python shards cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.clear_cache(Some(id)).await.unwrap();
        None
    } else {
        // Filter Python shard cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
561
        client.filter_batch(id, batch.request_ids).await.unwrap()
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    }
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
OlivierDehaene's avatar
OlivierDehaene committed
583
            tracing::error!("Entry response channel error.");
584
585
586
587
588
589
590
591
592
593
594
595
596
            metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
OlivierDehaene's avatar
OlivierDehaene committed
597
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
598
    // Return directly if the channel is disconnected
OlivierDehaene's avatar
OlivierDehaene committed
599
600
    if entry.response_tx.is_closed() {
        metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
601
602
603
        return Ok(true);
    }

604
605
606
607
    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Send message
OlivierDehaene's avatar
OlivierDehaene committed
608
609
610
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
611
612
613
    }

    // Create last Token
Nicolas Patry's avatar
Nicolas Patry committed
614
615
616
617
618
619
    let tokens_ = generation.tokens.expect("Non empty tokens in generation");
    let n = tokens_.ids.len();
    metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64);
    let mut iterator = tokens_
        .ids
        .into_iter()
620
621
622
        .zip(tokens_.logprobs)
        .zip(tokens_.texts)
        .zip(tokens_.is_special)
Nicolas Patry's avatar
Nicolas Patry committed
623
624
625
626
627
628
629
630
631
632
        .enumerate()
        .peekable();
    while let Some((i, (((id, logprob), text), special))) = iterator.next() {
        let token = Token {
            id,
            text,
            logprob,
            special,
        };
        let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) {
Nicolas Patry's avatar
Nicolas Patry committed
633
634
            top_tokens_
                .ids
Nicolas Patry's avatar
Nicolas Patry committed
635
636
637
638
639
                .iter()
                .zip(top_tokens_.logprobs.iter())
                .zip(top_tokens_.texts.iter())
                .zip(top_tokens_.is_special.iter())
                .map(|(((&id, &logprob), text), &special)| Token {
Nicolas Patry's avatar
Nicolas Patry committed
640
                    id,
Nicolas Patry's avatar
Nicolas Patry committed
641
                    text: text.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
642
643
                    logprob,
                    special,
Nicolas Patry's avatar
Nicolas Patry committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
                })
                .collect()
        } else {
            vec![]
        };
        match (&generation.generated_text, iterator.peek()) {
            (Some(generated_text), None) => {
                // Generation has ended
                stopped = true;
                // Send message
                entry.response_tx.send(Ok(InferStreamResponse::End {
                    token,
                    top_tokens,
                    generated_text: generated_text.clone(),
                    queued: entry.queue_time,
                    start: entry.batch_time.unwrap(),
                }))?;
            }
            _ => {
                // Send message
                entry
                    .response_tx
                    .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?;
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
669
670
    }

671
672
673
    Ok(stopped)
}

674
/// Send errors to Infer for all `entries`
675
676
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
677
    entries.drain().for_each(|(_, entry)| {
678
679
680
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
681
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
682
683
        tracing::error!("{err}");

684
685
686
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
OlivierDehaene's avatar
OlivierDehaene committed
687
            .send(Err(err))
688
689
690
691
692
693
694
            .unwrap_or(());
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
Nicolas Patry's avatar
Nicolas Patry committed
695
    Prefill(Tokens),
696
    // Intermediate messages
Nicolas Patry's avatar
Nicolas Patry committed
697
698
699
700
    Intermediate {
        token: Token,
        top_tokens: Vec<Token>,
    },
701
702
703
    // Last message
    End {
        token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
704
        top_tokens: Vec<Token>,
705
706
707
708
709
710
711
712
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
713
714
715
716
    /// input_length is the input as perceived by the rust tokenizer in the
    /// validation pathway. It is redundant with prefill.len() but prefill
    /// has data only if the user asked for it. This will always be filled.
    pub(crate) _input_length: u32,
717
    pub(crate) prefill: Vec<PrefillToken>,
718
719
720
721
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
Nicolas Patry's avatar
Nicolas Patry committed
722
    pub(crate) top_tokens: Vec<Vec<Token>>,
723
724
725
726
727
728
729
730
731
732
733
734
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
735
736
    #[error("Template error: {0}")]
    TemplateError(#[from] minijinja::Error),
737
}
738
739
740
741
742
743
744
745

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
746
            InferError::TemplateError(_) => "template_error",
747
748
749
        }
    }
}
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

// tests
#[cfg(test)]
mod tests {
    use crate::infer::raise_exception;
    use crate::ChatTemplateInputs;
    use crate::Message;
    use minijinja::Environment;

    #[test]
    fn test_chat_template() {
        let env = Environment::new();

        let source = r#"
        {% for message in messages %}
            {% if message['role'] == 'system' %}
                {% if message['content']%}
                    {{'### System:\n' + message['content']+'\n\n'}}
                {% endif %}
            {% elif message['role'] == 'user' %}
                {{'### User:\n' + message['content']+'\n\n'}}
            {% elif message['role'] == 'assistant' %}
                {{'### Assistant:\n'  + message['content']}}
            {% endif %}
            {% if loop.last and add_generation_prompt %}
                {{ '### Assistant:\n' }}
            {% endif %}
        {% endfor %}"#;

        // trim all the whitespace
        let source = source
            .lines()
            .map(|line| line.trim())
            .collect::<Vec<&str>>()
            .join("");

        let tmpl = env.template_from_str(&source);

        let chat_template_inputs = ChatTemplateInputs {
            messages: vec![
                Message {
                    role: "user".to_string(),
                    content: "Hi!".to_string(),
                },
                Message {
                    role: "assistant".to_string(),
                    content: "Hello how can I help?".to_string(),
                },
                Message {
                    role: "user".to_string(),
                    content: "What is Deep Learning?".to_string(),
                },
                Message {
                    role: "assistant".to_string(),
                    content: "magic!".to_string(),
                },
            ],
            bos_token: Some("[BOS]"),
            eos_token: Some("[EOS]"),
        };

        let result = tmpl.unwrap().render(chat_template_inputs).unwrap();

        assert_eq!(
            result,
            r#"### User:
Hi!

### Assistant:
Hello how can I help?### User:
What is Deep Learning?

### Assistant:
magic!"#
        );
    }

    #[test]
    fn test_chat_template_invalid_with_raise() {
        let mut env = Environment::new();
        env.add_function("raise_exception", raise_exception);

        let source = r#"
        {{ bos_token }}
        {% for message in messages %}
        {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
        {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
        {% endif %}
        {% if message['role'] == 'user' %}
        {{ '[INST] ' + message['content'] + ' [/INST]' }}
        {% elif message['role'] == 'assistant' %}
        {{ message['content'] + eos_token}}
        {% else %}
        {{ raise_exception('Only user and assistant roles are supported!') }}
        {% endif %}
        {% endfor %}"#;

        // trim all the whitespace
        let source = source
            .lines()
            .map(|line| line.trim())
            .collect::<Vec<&str>>()
            .join("");

        let tmpl = env.template_from_str(&source);

        let chat_template_inputs = ChatTemplateInputs {
            messages: vec![
                Message {
                    role: "user".to_string(),
                    content: "Hi!".to_string(),
                },
                Message {
                    role: "user".to_string(),
                    content: "Hi again!".to_string(),
                },
                Message {
                    role: "assistant".to_string(),
                    content: "Hello how can I help?".to_string(),
                },
                Message {
                    role: "user".to_string(),
                    content: "What is Deep Learning?".to_string(),
                },
                Message {
                    role: "assistant".to_string(),
                    content: "magic!".to_string(),
                },
            ],
            bos_token: Some("[BOS]"),
            eos_token: Some("[EOS]"),
        };

        let result = tmpl.unwrap().render(chat_template_inputs); //.err().unwrap();

        match result {
            Ok(_) => panic!("Should have failed"),
            Err(e) => {
                assert_eq!(
                    e.detail().unwrap(),
                    "Conversation roles must alternate user/assistant/user/assistant/..."
                );
            }
        }
    }

    #[test]
    fn test_chat_template_valid_with_raise() {
        let mut env = Environment::new();
        env.add_function("raise_exception", raise_exception);

        let source = r#"
        {{ bos_token }}
        {% for message in messages %}
        {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
        {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
        {% endif %}
        {% if message['role'] == 'user' %}
        {{ '[INST] ' + message['content'] + ' [/INST]' }}
        {% elif message['role'] == 'assistant' %}
        {{ message['content'] + eos_token}}
        {% else %}
        {{ raise_exception('Only user and assistant roles are supported!') }}
        {% endif %}
        {% endfor %}"#;

        // trim all the whitespace
        let source = source
            .lines()
            .map(|line| line.trim())
            .collect::<Vec<&str>>()
            .join("");

        let tmpl = env.template_from_str(&source);

        let chat_template_inputs = ChatTemplateInputs {
            messages: vec![
                Message {
                    role: "user".to_string(),
                    content: "Hi!".to_string(),
                },
                Message {
                    role: "assistant".to_string(),
                    content: "Hello how can I help?".to_string(),
                },
                Message {
                    role: "user".to_string(),
                    content: "What is Deep Learning?".to_string(),
                },
                Message {
                    role: "assistant".to_string(),
                    content: "magic!".to_string(),
                },
            ],
            bos_token: Some("[BOS]"),
            eos_token: Some("[EOS]"),
        };

        let result = tmpl.unwrap().render(chat_template_inputs).unwrap();
        assert_eq!(result, "[BOS][INST] Hi! [/INST]Hello how can I help?[EOS][INST] What is Deep Learning? [/INST]magic![EOS]");
    }
}