lib.rs 42.8 KB
Newer Older
1
pub mod config;
2
mod health;
3
/// Text Generation Inference Webserver
4
mod infer;
5
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
6
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
7
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
8

9
use infer::{Infer, InferError, InferStreamResponse};
10
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
use serde::{Deserialize, Serialize};
12
13
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
Nicolas Patry's avatar
Nicolas Patry committed
14
use tracing::warn;
15
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
16
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
17

18
19
20
21
22
23
24
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

drbh's avatar
drbh committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

44
45
/// Hub type
#[derive(Clone, Debug, Deserialize)]
46
pub struct HubModelInfo {
47
48
49
50
51
52
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

53
54
55
56
57
58
59
60
61
62
63
64
65
66
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
67
pub struct HubTokenizerConfig {
68
    pub chat_template: Option<ChatTemplateVersions>,
69
    pub completion_template: Option<String>,
70
    #[serde(deserialize_with = "token_serde::deserialize")]
71
    pub bos_token: Option<String>,
72
    #[serde(deserialize_with = "token_serde::deserialize")]
73
    pub eos_token: Option<String>,
74
75
76
}

impl HubTokenizerConfig {
77
78
79
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
80
81
82
    }
}

83
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
84
85
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
86
87
88
89
90
91
92
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
93
94
95
96
    #[serde(rename = "regex")]
    Regex(String),
}

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
120
            Value::Null => Ok(None),
121
122
123
124
125
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

126
127
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
128
    /// Model info
129
130
131
132
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
133
134
135
136
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
137
138
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
156
157
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
158
159
    #[schema(example = "2")]
    pub validation_workers: usize,
160
161
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
162
    /// Router Info
163
164
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
165
166
167
168
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
169
170
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
171
172
}

drbh's avatar
drbh committed
173
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
174
pub(crate) struct GenerateParameters {
175
    /// Generate best_of sequences and return the one if the highest token logprobs.
176
177
178
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
179
180

    /// The value used to module the logits distribution.
181
182
183
184
185
186
187
188
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
189
190
191

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
192
193
194
195
196
197
198
199
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
200
201
202
203

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
204
    #[serde(default)]
205
206
207
208
209
210
211
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
212
213

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
214
    #[serde(default)]
215
216
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
217
218

    /// Top-p value for nucleus sampling.
219
220
221
222
223
224
225
226
227
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
228
229
230

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
231
    #[serde(default)]
232
233
234
235
236
237
238
239
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
240
241

    /// Activate logits sampling.
242
    #[serde(default)]
243
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
244
    pub do_sample: bool,
245
246

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
247
    #[serde(default = "default_max_new_tokens")]
248
    #[schema(nullable = true, default = "100", example = "20")]
249
    pub max_new_tokens: Option<u32>,
250
251

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
252
    #[serde(default)]
253
    #[schema(nullable = true, default = "null", example = false)]
254
    pub return_full_text: Option<bool>,
255
256

    /// Stop generating tokens if a member of `stop` is generated.
257
    #[serde(default)]
258
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
259
    pub stop: Vec<String>,
260
261

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
262
    #[serde(default)]
263
    #[schema(nullable = true, default = "null", example = "null")]
264
    pub truncate: Option<usize>,
265
266

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
267
    #[serde(default)]
268
269
    #[schema(default = "false", example = true)]
    pub watermark: bool,
270
271

    /// Whether to return generation details.
272
    #[serde(default)]
273
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
274
    pub details: bool,
275
276

    /// Whether to return decoder input token logprobs and ids.
277
    #[serde(default)]
278
    #[schema(default = "false")]
279
    pub decoder_input_details: bool,
280
281

    /// Random sampling seed.
282
    #[serde(default)]
283
284
285
286
287
288
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
289
    pub seed: Option<u64>,
290
291

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
292
293
294
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
295
296

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
297
    #[serde(default)]
298
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
299
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
300
301
}

302
fn default_max_new_tokens() -> Option<u32> {
303
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
304
305
306
307
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
308
        best_of: None,
309
310
        temperature: None,
        repetition_penalty: None,
311
        frequency_penalty: None,
312
313
        top_k: None,
        top_p: None,
314
        typical_p: None,
315
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
316
        max_new_tokens: default_max_new_tokens(),
317
        return_full_text: None,
318
        stop: Vec::new(),
319
        truncate: None,
320
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
321
        details: false,
322
        decoder_input_details: false,
323
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
324
        top_n_tokens: None,
drbh's avatar
drbh committed
325
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
326
327
328
    }
}

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
mod prompt_serde {
    use serde::{self, Deserialize, Deserializer};
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(vec![s]),
            Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
                "Empty array detected. Do not use an empty array for the prompt.",
            )),
            Value::Array(arr) => arr
                .iter()
                .map(|v| match v {
                    Value::String(s) => Ok(s.to_owned()),
                    _ => Err(serde::de::Error::custom("Expected a string")),
                })
                .collect(),
            _ => Err(serde::de::Error::custom(
                "Expected a string or an array of strings",
            )),
        }
    }
}

357
358
359
360
361
362
363
364
365
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
366
367
    #[serde(deserialize_with = "prompt_serde::deserialize")]
    pub prompt: Vec<String>,
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
405
406
407
408
409

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

433
#[derive(Clone, Deserialize, Serialize, ToSchema)]
434
435
436
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
437
    #[schema(example = "1706270835")]
438
    pub created: u64,
439
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
440
441
442
443
444
445
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

446
#[derive(Clone, Deserialize, Serialize, ToSchema)]
447
448
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
449
    pub message: OutputMessage,
450
    pub logprobs: Option<ChatCompletionLogprobs>,
451
452
453
    pub finish_reason: String,
}

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
497
498
499
500
501
502
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
503
504
505
506
507
508
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

525
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
526
527
528
529
530
531
532
533
534
535
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
536
        output: Option<String>,
537
538
539
        created: u64,
        details: Details,
        return_logprobs: bool,
540
        tool_calls: Option<Vec<ToolCall>>,
541
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
566
567
568
569
570
571
572
573
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
574
                message,
575
                logprobs: return_logprobs
576
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
577
578
579
580
581
582
583
584
585
586
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
587
588
589
590
591
592
593
594
595
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
Nicolas Patry's avatar
Nicolas Patry committed
596

597
#[derive(Clone, Serialize, ToSchema)]
598
599
600
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
601
    #[schema(example = "1706270978")]
602
    pub created: u64,
603
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
604
605
606
607
608
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

609
#[derive(Clone, Serialize, ToSchema)]
610
611
612
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
613
    pub logprobs: Option<ChatCompletionLogprobs>,
614
615
616
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
617
618
619
620
621
622
623
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

624
625
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
626
627
628
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
629
630
}

Nicolas Patry's avatar
Nicolas Patry committed
631
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
632
633
634
635
636
637
638
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
639
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
640
641
642
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
643
644
}

drbh's avatar
drbh committed
645
#[allow(clippy::too_many_arguments)]
646
647
648
649
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
650
651
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
652
        created: u64,
653
        logprobs: Option<ChatCompletionLogprobs>,
654
655
        finish_reason: Option<String>,
    ) -> Self {
656
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
657
658
659
660
661
662
663
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
664
665
666
667
668
669
670
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
671
672
673
674
675
676
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
677
        };
678
679
680
681
682
683
684
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
685
                index: 0,
686
                delta,
687
688
689
690
691
692
693
694
695
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
696
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
697
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
698
    pub model: String,
drbh's avatar
drbh committed
699

700
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
701
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
702
703
704
705
706
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
707
    #[schema(example = "1.0")]
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
722
    #[schema(example = "false")]
723
724
725
726
727
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
728
    #[schema(example = "5")]
729
730
731
732
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
733
    #[schema(example = "32")]
734
735
736
737
738
739
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
740
    #[schema(nullable = true, example = "2")]
741
742
743
744
745
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
746
    #[schema(nullable = true, example = 0.1)]
747
748
    pub presence_penalty: Option<f32>,

749
750
751
752
753
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

754
755
756
757
758
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
759
760
761
762
763
764

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
765
    #[schema(nullable = true, example = 1.0)]
766
767
768
769
770
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
771
    #[schema(nullable = true, example = 0.95)]
772
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
773
774
775
776
777
778
779
780
781
782
783

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
784
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
785
786
787
788
789
790
791
792
793
794
795
796
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
}

fn default_tool_prompt() -> Option<String> {
    Some(
797
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

842
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
843
844
845
846
847
848
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

849
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
850
851
852
853
854
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

855
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
856
857
858
859
860
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

861
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
877
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
878
879
880
881
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
882
883
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
884
885
886
887
888
889
890
891
892
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
893
894
}

895
#[derive(Clone, Serialize, Deserialize, Default)]
896
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
897
    messages: Vec<TextMessage>,
898
899
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
900
    add_generation_prompt: bool,
901
902
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
903
904
}

Nicolas Patry's avatar
Nicolas Patry committed
905
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
906
pub(crate) struct ToolCall {
907
    pub id: String,
drbh's avatar
drbh committed
908
909
910
911
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
912
913
914
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Url {
    url: String,
drbh's avatar
drbh committed
915
916
}

Nicolas Patry's avatar
Nicolas Patry committed
917
918
919
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct ImageUrl {
    image_url: Url,
drbh's avatar
drbh committed
920
921
}

Nicolas Patry's avatar
Nicolas Patry committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Text {
    text: String,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
enum MessageChunk {
    Text(Text),
    ImageUrl(ImageUrl),
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
    #[serde(deserialize_with = "message_content_serde::deserialize")]
    content: Vec<MessageChunk>,
drbh's avatar
drbh committed
942
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
943
944
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
945
946
947
948
}

mod message_content_serde {
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
949
    use serde::{Deserialize, Deserializer};
drbh's avatar
drbh committed
950

Nicolas Patry's avatar
Nicolas Patry committed
951
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<MessageChunk>, D::Error>
drbh's avatar
drbh committed
952
953
954
    where
        D: Deserializer<'de>,
    {
Nicolas Patry's avatar
Nicolas Patry committed
955
956
957
958
959
        #[derive(Deserialize)]
        #[serde(untagged)]
        enum Message {
            Text(String),
            Chunks(Vec<MessageChunk>),
drbh's avatar
drbh committed
960
        }
Nicolas Patry's avatar
Nicolas Patry committed
961
962
963
964
965
966
967
968
        let message: Message = Deserialize::deserialize(deserializer)?;
        let chunks = match message {
            Message::Text(text) => {
                vec![MessageChunk::Text(Text { text })]
            }
            Message::Chunks(s) => s,
        };
        Ok(chunks)
drbh's avatar
drbh committed
969
970
971
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
972
973
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
974
975
976
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
            content: value
                .content
                .into_iter()
                .map(|c| match c {
                    MessageChunk::Text(Text { text }) => text,
                    MessageChunk::ImageUrl(image) => {
                        let url = image.image_url.url;
                        format!("![]({url})")
                    }
                })
                .collect::<Vec<_>>()
                .join(""),
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1012
1013
}

1014
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1015
pub(crate) struct GenerateRequest {
1016
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1017
1018
1019
1020
1021
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1022
1023
1024
1025
1026
1027
1028
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1029
    #[schema(default = "false")]
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1042
1043
1044
1045
1046
1047
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1048
    #[schema(nullable = true, example = - 0.34)]
1049
1050
1051
    logprob: f32,
}

1052
#[derive(Debug, Serialize, ToSchema, Clone)]
1053
1054
1055
1056
1057
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1058
    #[schema(nullable = true, example = - 0.34)]
1059
    logprob: f32,
1060
1061
    #[schema(example = "false")]
    special: bool,
1062
1063
}

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

1076
1077
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
1078
#[schema(example = "Length")]
1079
1080
1081
1082
1083
1084
1085
1086
1087
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1088

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1111
1112
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1113
1114
}

1115
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1116
pub(crate) struct Details {
1117
1118
1119
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1120
    pub generated_tokens: u32,
1121
    #[schema(nullable = true, example = 42)]
1122
    pub seed: Option<u64>,
1123
1124
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1125
1126
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1127
1128
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1129
1130
}

1131
#[derive(Serialize, ToSchema)]
1132
pub(crate) struct GenerateResponse {
1133
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1134
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1135
1136
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1137
}
1138

1139
1140
1141
1142
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1143
1144
1145
1146
1147
1148
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1149
    #[schema(nullable = true, example = 42)]
1150
1151
1152
1153
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1154
pub(crate) struct StreamResponse {
1155
    pub index: u32,
1156
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1157
1158
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1159
    #[schema(nullable = true, default = "null", example = "test")]
1160
    pub generated_text: Option<String>,
1161
1162
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1163
1164
}

1165
#[derive(Serialize, ToSchema)]
1166
1167
pub(crate) struct ErrorResponse {
    pub error: String,
1168
    pub error_type: String,
1169
}
1170
1171

#[cfg(test)]
1172
mod tests {
1173
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1174
    use serde_json::json;
1175
1176
    use tokenizers::Tokenizer;

1177
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1178
1179
1180
1181
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1182
    }
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1197
1198
1199
1200
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1232
1233
1234
1235
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1236
1237
1238
1239
1240
1241
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
Nicolas Patry's avatar
Nicolas Patry committed
1242
1243
1244

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1245
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1246
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1247
1248
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1249
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1250
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
                content: vec![MessageChunk::Text(Text {
                    text: "What is Deep Learning?".to_string()
                }),],
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1268
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1269
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1270
1271
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1272
1273
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1274
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1275
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1276
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1338
}