README.md 10.2 KB
Newer Older
1
2
<div align="center">

3
4
![image](https://github.com/huggingface/text-generation-inference/assets/3841370/38ba1531-ea0d-4851-b31a-a6d4ddc944b0)

5
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
6

7
8
9
10
11
12
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13

14
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
15
16
17
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
18
19
20
21

## Table of contents

- [Features](#features)
22
- [Optimized Architectures](#optimized-architectures)
23
24
- [Get Started](#get-started)
  - [Docker](#docker)
25
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
26
  - [Using a private or gated model](#using-a-private-or-gated-model)
27
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
28
  - [Distributed Tracing](#distributed-tracing)
29
30
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
OlivierDehaene's avatar
OlivierDehaene committed
31
- [Run Falcon](#run-falcon)
32
33
34
35
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
36
- [Other supported hardware](#other-supported-hardware)
37

38
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
39

OlivierDehaene's avatar
OlivierDehaene committed
40
41
- Serve the most popular Large Language Models with a simple launcher
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
42
- Token streaming using Server-Sent Events (SSE)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
43
- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
44
45
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
46
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
47
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
48
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
49
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
50
- Log probabilities
OlivierDehaene's avatar
OlivierDehaene committed
51
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
52
53
54
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output.
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance.

55

56
## Optimized architectures
Olivier Dehaene's avatar
Olivier Dehaene committed
57

OlivierDehaene's avatar
OlivierDehaene committed
58
- [BLOOM](https://huggingface.co/bigscience/bloom)
59
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
60
- [Galactica](https://huggingface.co/facebook/galactica-120b)
61
62
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Llama](https://github.com/facebookresearch/llama)
63
64
- [OPT](https://huggingface.co/facebook/opt-66b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
65
66
67
- [Starcoder](https://huggingface.co/bigcode/starcoder)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
OlivierDehaene's avatar
OlivierDehaene committed
68
69
- [MPT](https://huggingface.co/mosaicml/mpt-30b)
- [Llama V2](https://huggingface.co/meta-llama)
70
- [Code Llama](https://huggingface.co/codellama)
71

72
Other architectures are supported on a best effort basis using:
73
74
75
76
77
78
79

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

80
81
82
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
83

84
85
86
The easiest way of getting started is using the official Docker container:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
87
model=tiiuae/falcon-7b-instruct
88
89
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

Nicolas Patry's avatar
Nicolas Patry committed
90
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.1.0 --model-id $model
91
```
92
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
Olivier Dehaene's avatar
Olivier Dehaene committed
93

Adarsh Shirawalmath's avatar
Adarsh Shirawalmath committed
94
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
95
96
97
98
```
text-generation-launcher --help
```

99
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
100

101
102
103
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
104
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
105
106
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
107
108

```shell
109
110
curl 127.0.0.1:8080/generate_stream \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
111
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
112
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
113
114
```

OlivierDehaene's avatar
OlivierDehaene committed
115
116
117
or from Python:

```shell
118
pip install text-generation
OlivierDehaene's avatar
OlivierDehaene committed
119
120
```

121
122
```python
from text_generation import Client
OlivierDehaene's avatar
OlivierDehaene committed
123

124
client = Client("http://127.0.0.1:8080")
OlivierDehaene's avatar
OlivierDehaene committed
125
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
OlivierDehaene's avatar
OlivierDehaene committed
126

127
text = ""
OlivierDehaene's avatar
OlivierDehaene committed
128
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
129
130
131
132
    if not response.token.special:
        text += response.token.text
print(text)
```
OlivierDehaene's avatar
OlivierDehaene committed
133

134
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
135

136
137
138
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
139
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
140

141
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
142
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
143

OlivierDehaene's avatar
OlivierDehaene committed
144
For example, if you want to serve the gated Llama V2 model variants:
145

OlivierDehaene's avatar
OlivierDehaene committed
146
147
148
149
150
151
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

152
```shell
OlivierDehaene's avatar
OlivierDehaene committed
153
154
155
156
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

157
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.3 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
158
```
159

160
161
### A note on Shared Memory (shm)

162
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

183
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
184
185
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
186
187
188
189
190
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

191
192
### Local install

193
You can also opt to install `text-generation-inference` locally.
194

195
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
196
197
198
199
200
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

201
conda create -n text-generation-inference python=3.9
202
203
204
conda activate text-generation-inference
```

205
206
207
208
209
210
211
212
213
214
215
216
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

217
On MacOS, using Homebrew:
218
219
220
221
222

```shell
brew install protobuf
```

223
Then run:
224

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
225
```shell
226
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
227
make run-falcon-7b-instruct
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
228
229
```

230
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
231
232

```shell
233
sudo apt-get install libssl-dev gcc -y
234
235
```

236
237
### CUDA Kernels

238
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
Nicolas Patry's avatar
Nicolas Patry committed
239
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
240
241
242

Be aware that the official Docker image has them enabled by default.

OlivierDehaene's avatar
OlivierDehaene committed
243
## Run Falcon
244

245
246
### Run

247
```shell
248
make run-falcon-7b-instruct
249
250
```

251
252
### Quantization

253
254
255
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
256
make run-falcon-7b-instruct-quantize
257
258
```

Nicolas Patry's avatar
Nicolas Patry committed
259
260
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

261
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
262

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
263
```shell
264
265
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
266
267
```

268
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
269
270

```shell
271
272
273
274
# python
make python-server-tests
make python-client-tests
# or both server and client tests
275
make python-tests
276
# rust cargo tests
277
278
make rust-tests
# integration tests
279
make integration-tests
280
```
281
282
283
284
285
286


## Other supported hardware

TGI is also supported on the following AI hardware accelerators:
- *Habana first-gen Gaudi and Gaudi2:* checkout [here](https://github.com/huggingface/optimum-habana/tree/main/text-generation-inference) how to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index)
287