README.md 6.83 KB
Newer Older
1
2
<div align="center">

3
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
4

5
6
7
8
9
10
11
12
13
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
  <img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
Olivier Dehaene committed
14

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
![architecture](assets/architecture.jpg)

</div>

19
20
21
22
23
24
25
26
27
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) 
to power LLMs api-inference widgets.

## Table of contents

- [Features](#features)
- [Officially Supported Models](#officially-supported-models)
- [Get Started](#get-started)
  - [Docker](#docker)
28
29
  - [API Documentation](#api-documentation)
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
30
  - [Distributed Tracing](#distributed-tracing)
31
32
33
34
35
36
37
38
39
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
- [Run BLOOM](#run-bloom)
  - [Download](#download)
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
  
40
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
41

Yannic Kilcher's avatar
Yannic Kilcher committed
42
- Token streaming using Server-Sent Events (SSE)
OlivierDehaene's avatar
OlivierDehaene committed
43
- [Dynamic batching of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput
44
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
45
46
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
- 45ms per token generation for BLOOM with 8xA100 80GB
47
- Logits warpers (temperature scaling, topk, repetition penalty ...)
48
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
49
- Log probabilities
50
- Distributed tracing with Open Telemetry
51

52
## Officially supported architectures
Olivier Dehaene's avatar
Olivier Dehaene committed
53

OlivierDehaene's avatar
OlivierDehaene committed
54
55
56
- [BLOOM](https://huggingface.co/bigscience/bloom)
- [BLOOMZ](https://huggingface.co/bigscience/bloomz)
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
57
- [Galactica](https://huggingface.co/facebook/galactica-120b)
58
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
59
- [GPT-Neox 20B](https://huggingface.co/EleutherAI/gpt-neox-20b)
60
- [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl)
61

62
Other architectures are supported on a best effort basis using:
63
64
65
66
67
68
69

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

70
71
72
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
73

74
75
76
77
78
79
80
The easiest way of getting started is using the official Docker container:

```shell
model=bigscience/bloom-560m
num_shard=2
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

81
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --num-shard $num_shard
82
```
Olivier Dehaene's avatar
Olivier Dehaene committed
83

84
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
85

86
87
88
89
90
91
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
    -d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
92
93

```shell
94
95
96
97
curl 127.0.0.1:8080/generate_stream \
    -X POST \
    -d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
98
99
```

100
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html).
101
102

### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
103

104
105
106
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

107
108
109
110
111
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
### A note on Shared Memory (shm)

[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by 
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that 
this will impact performance.

138
139
### Local install

140
141
142
143
144
145
146
147
148
149
150
151
You can also opt to install `text-generation-inference` locally. 

First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least 
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

conda create -n text-generation-inference python=3.9 
conda activate text-generation-inference
```

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

On MacOS, using Homebrew: 

```shell
brew install protobuf
```

170
Then run:
171

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
172
```shell
173
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
174
make run-bloom-560m
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
175
176
```

177
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
178
179

```shell
180
sudo apt-get install libssl-dev gcc -y
181
182
```

183
184
185
186
187
188
189
190
191
192
### CUDA Kernels

The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove 
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.

Be aware that the official Docker image has them enabled by default.

## Run BLOOM

### Download
193

194
It is advised to download the weights ahead of time with the following command:
195
196
197
198
199

```shell
make download-bloom
```

200
201
### Run

202
203
204
205
```shell
make run-bloom # Requires 8xA100 80GB
```

206
207
### Quantization

208
209
210
211
212
213
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
make run-bloom-quantize # Requires 8xA100 40GB
```

214
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
215

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
216
```shell
217
218
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
219
220
```

221
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
222
223

```shell
224
225
make python-tests
make integration-tests
226
```