README.md 8.07 KB
Newer Older
1
2
<div align="center">

3
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
4

5
6
7
8
9
10
11
12
13
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
  <img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
Olivier Dehaene committed
14

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
![architecture](assets/architecture.jpg)

</div>

19
20
21
22
23
24
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) 
to power LLMs api-inference widgets.

## Table of contents

- [Features](#features)
25
- [Optimized Architectures](#optimized-architectures)
26
27
- [Get Started](#get-started)
  - [Docker](#docker)
28
29
  - [API Documentation](#api-documentation)
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
30
  - [Distributed Tracing](#distributed-tracing)
31
32
33
34
35
36
37
38
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
- [Run BLOOM](#run-bloom)
  - [Download](#download)
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
39

40
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
41

OlivierDehaene's avatar
OlivierDehaene committed
42
43
- Serve the most popular Large Language Models with a simple launcher
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
44
- Token streaming using Server-Sent Events (SSE)
45
46
- [Continous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) on the most popular architectures
47
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
48
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
49
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
50
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
51
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
52
- Log probabilities
OlivierDehaene's avatar
OlivierDehaene committed
53
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
54

55
## Optimized architectures
Olivier Dehaene's avatar
Olivier Dehaene committed
56

OlivierDehaene's avatar
OlivierDehaene committed
57
- [BLOOM](https://huggingface.co/bigscience/bloom)
58
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
59
- [Galactica](https://huggingface.co/facebook/galactica-120b)
60
61
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Llama](https://github.com/facebookresearch/llama)
62
63
- [OPT](https://huggingface.co/facebook/opt-66b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
64

65
Other architectures are supported on a best effort basis using:
66
67
68
69
70
71
72

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

73
74
75
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
76

77
78
79
80
81
82
83
The easiest way of getting started is using the official Docker container:

```shell
model=bigscience/bloom-560m
num_shard=2
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

84
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --num-shard $num_shard
85
```
86
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
Olivier Dehaene's avatar
Olivier Dehaene committed
87

88
89
90
91
92
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli:
```
text-generation-launcher --help
```

93
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
94

95
96
97
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
98
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
99
100
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
101
102

```shell
103
104
curl 127.0.0.1:8080/generate_stream \
    -X POST \
105
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
106
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
107
108
```

OlivierDehaene's avatar
OlivierDehaene committed
109
110
111
or from Python:

```shell
112
pip install text-generation
OlivierDehaene's avatar
OlivierDehaene committed
113
114
```

115
116
```python
from text_generation import Client
OlivierDehaene's avatar
OlivierDehaene committed
117

118
119
client = Client("http://127.0.0.1:8080")
print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text)
OlivierDehaene's avatar
OlivierDehaene committed
120

121
122
123
124
125
126
text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17):
    if not response.token.special:
        text += response.token.text
print(text)
```
OlivierDehaene's avatar
OlivierDehaene committed
127

128
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
129

130
131
132
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

133
134
135
136
137
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

138
139
### A note on Shared Memory (shm)

140
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

161
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
162
163
this will impact performance.

164
165
### Local install

166
You can also opt to install `text-generation-inference` locally.
167

168
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
169
170
171
172
173
174
175
176
177
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

conda create -n text-generation-inference python=3.9 
conda activate text-generation-inference
```

178
179
180
181
182
183
184
185
186
187
188
189
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

190
On MacOS, using Homebrew:
191
192
193
194
195

```shell
brew install protobuf
```

196
Then run:
197

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
198
```shell
199
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
200
make run-bloom-560m
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
201
202
```

203
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
204
205

```shell
206
sudo apt-get install libssl-dev gcc -y
207
208
```

209
210
211
212
213
214
215
216
217
218
### CUDA Kernels

The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove 
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.

Be aware that the official Docker image has them enabled by default.

## Run BLOOM

### Download
219

220
It is advised to download the weights ahead of time with the following command:
221
222
223
224
225

```shell
make download-bloom
```

226
227
### Run

228
229
230
231
```shell
make run-bloom # Requires 8xA100 80GB
```

232
233
### Quantization

234
235
236
237
238
239
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
make run-bloom-quantize # Requires 8xA100 40GB
```

240
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
241

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
242
```shell
243
244
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
245
246
```

247
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
248
249

```shell
250
251
252
253
# python
make python-server-tests
make python-client-tests
# or both server and client tests
254
make python-tests
255
# rust cargo tests
256
make integration-tests
257
```