"awq_ext/quantization/gemv_cuda.h" did not exist on "5440c0aa8db161196ccfc855a4fa3fbd5874b810"
README.md 8.26 KB
Newer Older
1
2
<div align="center">

3
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
4

5
6
7
8
9
10
11
12
13
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
  <img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
Olivier Dehaene committed
14

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
![architecture](assets/architecture.jpg)

</div>

19
20
21
22
23
24
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) 
to power LLMs api-inference widgets.

## Table of contents

- [Features](#features)
25
- [Optimized Architectures](#optimized-architectures)
26
27
- [Get Started](#get-started)
  - [Docker](#docker)
28
29
  - [API Documentation](#api-documentation)
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
30
  - [Distributed Tracing](#distributed-tracing)
31
32
33
34
35
36
37
38
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
- [Run BLOOM](#run-bloom)
  - [Download](#download)
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
39

40
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
41

OlivierDehaene's avatar
OlivierDehaene committed
42
43
- Serve the most popular Large Language Models with a simple launcher
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
44
- Token streaming using Server-Sent Events (SSE)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
45
- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
46
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) on the most popular architectures
47
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
48
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
49
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
50
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
51
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
52
- Log probabilities
OlivierDehaene's avatar
OlivierDehaene committed
53
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
54

55
## Optimized architectures
Olivier Dehaene's avatar
Olivier Dehaene committed
56

OlivierDehaene's avatar
OlivierDehaene committed
57
- [BLOOM](https://huggingface.co/bigscience/bloom)
58
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
59
- [Galactica](https://huggingface.co/facebook/galactica-120b)
60
61
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Llama](https://github.com/facebookresearch/llama)
62
63
- [OPT](https://huggingface.co/facebook/opt-66b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
64
65
66
- [Starcoder](https://huggingface.co/bigcode/starcoder)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
67

68
Other architectures are supported on a best effort basis using:
69
70
71
72
73
74
75

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

76
77
78
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
79

80
81
82
83
84
85
86
The easiest way of getting started is using the official Docker container:

```shell
model=bigscience/bloom-560m
num_shard=2
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
87
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.8 --model-id $model --num-shard $num_shard
88
```
89
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
Olivier Dehaene's avatar
Olivier Dehaene committed
90

91
92
93
94
95
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli:
```
text-generation-launcher --help
```

96
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
97

98
99
100
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
101
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
102
103
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
104
105

```shell
106
107
curl 127.0.0.1:8080/generate_stream \
    -X POST \
108
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
109
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
110
111
```

OlivierDehaene's avatar
OlivierDehaene committed
112
113
114
or from Python:

```shell
115
pip install text-generation
OlivierDehaene's avatar
OlivierDehaene committed
116
117
```

118
119
```python
from text_generation import Client
OlivierDehaene's avatar
OlivierDehaene committed
120

121
122
client = Client("http://127.0.0.1:8080")
print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text)
OlivierDehaene's avatar
OlivierDehaene committed
123

124
125
126
127
128
129
text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17):
    if not response.token.special:
        text += response.token.text
print(text)
```
OlivierDehaene's avatar
OlivierDehaene committed
130

131
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
132

133
134
135
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

136
137
138
139
140
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

141
142
### A note on Shared Memory (shm)

143
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

164
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
165
166
this will impact performance.

167
168
### Local install

169
You can also opt to install `text-generation-inference` locally.
170

171
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
172
173
174
175
176
177
178
179
180
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

conda create -n text-generation-inference python=3.9 
conda activate text-generation-inference
```

181
182
183
184
185
186
187
188
189
190
191
192
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

193
On MacOS, using Homebrew:
194
195
196
197
198

```shell
brew install protobuf
```

199
Then run:
200

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
201
```shell
202
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
203
make run-bloom-560m
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
204
205
```

206
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
207
208

```shell
209
sudo apt-get install libssl-dev gcc -y
210
211
```

212
213
214
215
216
217
218
219
220
221
### CUDA Kernels

The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove 
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.

Be aware that the official Docker image has them enabled by default.

## Run BLOOM

### Download
222

223
It is advised to download the weights ahead of time with the following command:
224
225
226
227
228

```shell
make download-bloom
```

229
230
### Run

231
232
233
234
```shell
make run-bloom # Requires 8xA100 80GB
```

235
236
### Quantization

237
238
239
240
241
242
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
make run-bloom-quantize # Requires 8xA100 40GB
```

243
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
244

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
245
```shell
246
247
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
248
249
```

250
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
251
252

```shell
253
254
255
256
# python
make python-server-tests
make python-client-tests
# or both server and client tests
257
make python-tests
258
# rust cargo tests
259
260
make rust-tests
# integration tests
261
make integration-tests
262
```