README.md 7.6 KB
Newer Older
1
2
<div align="center">

3
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
4

5
6
7
8
9
10
11
12
13
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
  <img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
Olivier Dehaene committed
14

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
![architecture](assets/architecture.jpg)

</div>

19
20
21
22
23
24
25
26
27
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) 
to power LLMs api-inference widgets.

## Table of contents

- [Features](#features)
- [Officially Supported Models](#officially-supported-models)
- [Get Started](#get-started)
  - [Docker](#docker)
28
29
  - [API Documentation](#api-documentation)
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
30
  - [Distributed Tracing](#distributed-tracing)
31
32
33
34
35
36
37
38
39
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
- [Run BLOOM](#run-bloom)
  - [Download](#download)
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
  
40
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
41

OlivierDehaene's avatar
OlivierDehaene committed
42
43
- Serve the most popular Large Language Models with a simple launcher
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
44
- Token streaming using Server-Sent Events (SSE)
OlivierDehaene's avatar
OlivierDehaene committed
45
- [Dynamic batching of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput
46
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
47
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
48
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
49
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
50
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
51
- Log probabilities
OlivierDehaene's avatar
OlivierDehaene committed
52
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
53

54
## Optimized architectures
Olivier Dehaene's avatar
Olivier Dehaene committed
55

OlivierDehaene's avatar
OlivierDehaene committed
56
- [BLOOM](https://huggingface.co/bigscience/bloom)
57
- [Galactica](https://huggingface.co/facebook/galactica-120b)
58
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
59
60
61
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
- [Llama](https://github.com/facebookresearch/llama)
62

63
Other architectures are supported on a best effort basis using:
64
65
66
67
68
69
70

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

71
72
73
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
74

75
76
77
78
79
80
81
The easiest way of getting started is using the official Docker container:

```shell
model=bigscience/bloom-560m
num_shard=2
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

82
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --num-shard $num_shard
83
```
84
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
Olivier Dehaene's avatar
Olivier Dehaene committed
85

86
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
87

88
89
90
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
91
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
92
93
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
94
95

```shell
96
97
curl 127.0.0.1:8080/generate_stream \
    -X POST \
98
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
99
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
100
101
```

OlivierDehaene's avatar
OlivierDehaene committed
102
103
104
or from Python:

```shell
105
pip install text-generation
OlivierDehaene's avatar
OlivierDehaene committed
106
107
```

108
109
```python
from text_generation import Client
OlivierDehaene's avatar
OlivierDehaene committed
110

111
112
client = Client("http://127.0.0.1:8080")
print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text)
OlivierDehaene's avatar
OlivierDehaene committed
113

114
115
116
117
118
119
text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17):
    if not response.token.special:
        text += response.token.text
print(text)
```
OlivierDehaene's avatar
OlivierDehaene committed
120

121
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
122

123
124
125
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

126
127
128
129
130
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
### A note on Shared Memory (shm)

[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by 
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that 
this will impact performance.

157
158
### Local install

159
160
161
162
163
164
165
166
167
168
169
170
You can also opt to install `text-generation-inference` locally. 

First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least 
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

conda create -n text-generation-inference python=3.9 
conda activate text-generation-inference
```

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

On MacOS, using Homebrew: 

```shell
brew install protobuf
```

189
Then run:
190

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
191
```shell
192
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
193
make run-bloom-560m
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
194
195
```

196
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
197
198

```shell
199
sudo apt-get install libssl-dev gcc -y
200
201
```

202
203
204
205
206
207
208
209
210
211
### CUDA Kernels

The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove 
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.

Be aware that the official Docker image has them enabled by default.

## Run BLOOM

### Download
212

213
It is advised to download the weights ahead of time with the following command:
214
215
216
217
218

```shell
make download-bloom
```

219
220
### Run

221
222
223
224
```shell
make run-bloom # Requires 8xA100 80GB
```

225
226
### Quantization

227
228
229
230
231
232
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
make run-bloom-quantize # Requires 8xA100 40GB
```

233
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
234

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
235
```shell
236
237
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
238
239
```

240
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
241
242

```shell
243
244
make python-tests
make integration-tests
245
```