README.md 9.72 KB
Newer Older
1
2
<div align="center">

3
4
![image](https://github.com/huggingface/text-generation-inference/assets/3841370/38ba1531-ea0d-4851-b31a-a6d4ddc944b0)

5
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
6

7
8
9
10
11
12
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13

14
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
15
16
17
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
18
19
20
21

## Table of contents

- [Features](#features)
22
- [Optimized Architectures](#optimized-architectures)
23
24
- [Get Started](#get-started)
  - [Docker](#docker)
25
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
26
  - [Using a private or gated model](#using-a-private-or-gated-model)
27
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
28
  - [Distributed Tracing](#distributed-tracing)
29
30
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
OlivierDehaene's avatar
OlivierDehaene committed
31
- [Run Falcon](#run-falcon)
32
33
34
35
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
36
- [Other supported hardware](#other-supported-hardware)
37

38
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
39

OlivierDehaene's avatar
OlivierDehaene committed
40
41
- Serve the most popular Large Language Models with a simple launcher
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
42
- Token streaming using Server-Sent Events (SSE)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
43
- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
44
45
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
46
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
47
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
48
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
49
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
50
- Log probabilities
OlivierDehaene's avatar
OlivierDehaene committed
51
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
52

53
## Optimized architectures
Olivier Dehaene's avatar
Olivier Dehaene committed
54

OlivierDehaene's avatar
OlivierDehaene committed
55
- [BLOOM](https://huggingface.co/bigscience/bloom)
56
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
57
- [Galactica](https://huggingface.co/facebook/galactica-120b)
58
59
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Llama](https://github.com/facebookresearch/llama)
60
61
- [OPT](https://huggingface.co/facebook/opt-66b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
62
63
64
- [Starcoder](https://huggingface.co/bigcode/starcoder)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
OlivierDehaene's avatar
OlivierDehaene committed
65
66
- [MPT](https://huggingface.co/mosaicml/mpt-30b)
- [Llama V2](https://huggingface.co/meta-llama)
67

68
Other architectures are supported on a best effort basis using:
69
70
71
72
73
74
75

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

76
77
78
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
79

80
81
82
The easiest way of getting started is using the official Docker container:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
83
model=tiiuae/falcon-7b-instruct
84
85
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

OlivierDehaene's avatar
OlivierDehaene committed
86
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.0 --model-id $model
87
```
88
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
Olivier Dehaene's avatar
Olivier Dehaene committed
89

90
91
92
93
94
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli:
```
text-generation-launcher --help
```

95
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
96

97
98
99
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
100
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
101
102
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
103
104

```shell
105
106
curl 127.0.0.1:8080/generate_stream \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
107
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
108
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
109
110
```

OlivierDehaene's avatar
OlivierDehaene committed
111
112
113
or from Python:

```shell
114
pip install text-generation
OlivierDehaene's avatar
OlivierDehaene committed
115
116
```

117
118
```python
from text_generation import Client
OlivierDehaene's avatar
OlivierDehaene committed
119

120
client = Client("http://127.0.0.1:8080")
OlivierDehaene's avatar
OlivierDehaene committed
121
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
OlivierDehaene's avatar
OlivierDehaene committed
122

123
text = ""
OlivierDehaene's avatar
OlivierDehaene committed
124
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
125
126
127
128
    if not response.token.special:
        text += response.token.text
print(text)
```
OlivierDehaene's avatar
OlivierDehaene committed
129

130
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
131

132
133
134
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
135
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
136

137
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
138
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
139

OlivierDehaene's avatar
OlivierDehaene committed
140
For example, if you want to serve the gated Llama V2 model variants:
141

OlivierDehaene's avatar
OlivierDehaene committed
142
143
144
145
146
147
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

148
```shell
OlivierDehaene's avatar
OlivierDehaene committed
149
150
151
152
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

OlivierDehaene's avatar
OlivierDehaene committed
153
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.0 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
154
```
155

156
157
### A note on Shared Memory (shm)

158
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

179
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
180
181
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
182
183
184
185
186
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

187
188
### Local install

189
You can also opt to install `text-generation-inference` locally.
190

191
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
192
193
194
195
196
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

197
conda create -n text-generation-inference python=3.9
198
199
200
conda activate text-generation-inference
```

201
202
203
204
205
206
207
208
209
210
211
212
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

213
On MacOS, using Homebrew:
214
215
216
217
218

```shell
brew install protobuf
```

219
Then run:
220

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
221
```shell
222
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
223
make run-falcon-7b-instruct
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
224
225
```

226
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
227
228

```shell
229
sudo apt-get install libssl-dev gcc -y
230
231
```

232
233
### CUDA Kernels

234
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
Nicolas Patry's avatar
Nicolas Patry committed
235
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
236
237
238

Be aware that the official Docker image has them enabled by default.

OlivierDehaene's avatar
OlivierDehaene committed
239
## Run Falcon
240

241
242
### Run

243
```shell
244
make run-falcon-7b-instruct
245
246
```

247
248
### Quantization

249
250
251
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
252
make run-falcon-7b-instruct-quantize
253
254
```

Nicolas Patry's avatar
Nicolas Patry committed
255
256
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

257
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
258

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
259
```shell
260
261
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
262
263
```

264
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
265
266

```shell
267
268
269
270
# python
make python-server-tests
make python-client-tests
# or both server and client tests
271
make python-tests
272
# rust cargo tests
273
274
make rust-tests
# integration tests
275
make integration-tests
276
```
277
278
279
280
281
282


## Other supported hardware

TGI is also supported on the following AI hardware accelerators:
- *Habana first-gen Gaudi and Gaudi2:* checkout [here](https://github.com/huggingface/optimum-habana/tree/main/text-generation-inference) how to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index)