lib.rs 43.2 KB
Newer Older
1
pub mod config;
2
mod health;
3
/// Text Generation Inference Webserver
4
mod infer;
5
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
6
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
7
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
8

9
use infer::{Infer, InferError, InferStreamResponse};
10
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
use serde::{Deserialize, Serialize};
12
13
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
Nicolas Patry's avatar
Nicolas Patry committed
14
use tracing::warn;
15
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
16
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
17

18
19
20
21
22
23
24
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

drbh's avatar
drbh committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

44
45
/// Hub type
#[derive(Clone, Debug, Deserialize)]
46
pub struct HubModelInfo {
47
48
49
50
51
52
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

53
54
55
56
57
58
59
60
61
62
63
64
65
66
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
67
pub struct HubTokenizerConfig {
68
    pub chat_template: Option<ChatTemplateVersions>,
69
    pub completion_template: Option<String>,
70
    #[serde(deserialize_with = "token_serde::deserialize")]
71
    pub bos_token: Option<String>,
72
    #[serde(deserialize_with = "token_serde::deserialize")]
73
    pub eos_token: Option<String>,
74
75
76
}

impl HubTokenizerConfig {
77
78
79
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
80
81
82
    }
}

drbh's avatar
drbh committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

97
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
98
99
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
100
101
102
103
104
105
106
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
107
108
109
110
    #[serde(rename = "regex")]
    Regex(String),
}

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
134
            Value::Null => Ok(None),
135
136
137
138
139
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

140
141
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
142
    /// Model info
143
144
145
146
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
147
148
149
150
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
151
152
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
170
171
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
172
173
    #[schema(example = "2")]
    pub validation_workers: usize,
174
175
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
176
    /// Router Info
177
178
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
179
180
181
182
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
183
184
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
185
186
}

drbh's avatar
drbh committed
187
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
188
pub(crate) struct GenerateParameters {
189
    /// Generate best_of sequences and return the one if the highest token logprobs.
190
191
192
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
193
194

    /// The value used to module the logits distribution.
195
196
197
198
199
200
201
202
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
203
204
205

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
206
207
208
209
210
211
212
213
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
214
215
216
217

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
218
    #[serde(default)]
219
220
221
222
223
224
225
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
226
227

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
228
    #[serde(default)]
229
230
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
231
232

    /// Top-p value for nucleus sampling.
233
234
235
236
237
238
239
240
241
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
242
243
244

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
245
    #[serde(default)]
246
247
248
249
250
251
252
253
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
254
255

    /// Activate logits sampling.
256
    #[serde(default)]
257
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
258
    pub do_sample: bool,
259
260

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
261
    #[serde(default = "default_max_new_tokens")]
262
    #[schema(nullable = true, default = "100", example = "20")]
263
    pub max_new_tokens: Option<u32>,
264
265

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
266
    #[serde(default)]
267
    #[schema(nullable = true, default = "null", example = false)]
268
    pub return_full_text: Option<bool>,
269
270

    /// Stop generating tokens if a member of `stop` is generated.
271
    #[serde(default)]
272
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
273
    pub stop: Vec<String>,
274
275

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
276
    #[serde(default)]
277
    #[schema(nullable = true, default = "null", example = "null")]
278
    pub truncate: Option<usize>,
279
280

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
281
    #[serde(default)]
282
283
    #[schema(default = "false", example = true)]
    pub watermark: bool,
284
285

    /// Whether to return generation details.
286
    #[serde(default)]
287
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
288
    pub details: bool,
289
290

    /// Whether to return decoder input token logprobs and ids.
291
    #[serde(default)]
292
    #[schema(default = "false")]
293
    pub decoder_input_details: bool,
294
295

    /// Random sampling seed.
296
    #[serde(default)]
297
298
299
300
301
302
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
303
    pub seed: Option<u64>,
304
305

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
306
307
308
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
309
310

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
311
    #[serde(default)]
312
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
313
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
314
315
}

316
fn default_max_new_tokens() -> Option<u32> {
317
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
318
319
320
321
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
322
        best_of: None,
323
324
        temperature: None,
        repetition_penalty: None,
325
        frequency_penalty: None,
326
327
        top_k: None,
        top_p: None,
328
        typical_p: None,
329
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
330
        max_new_tokens: default_max_new_tokens(),
331
        return_full_text: None,
332
        stop: Vec::new(),
333
        truncate: None,
334
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
335
        details: false,
336
        decoder_input_details: false,
337
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
338
        top_n_tokens: None,
drbh's avatar
drbh committed
339
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
340
341
342
    }
}

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
mod prompt_serde {
    use serde::{self, Deserialize, Deserializer};
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(vec![s]),
            Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
                "Empty array detected. Do not use an empty array for the prompt.",
            )),
            Value::Array(arr) => arr
                .iter()
                .map(|v| match v {
                    Value::String(s) => Ok(s.to_owned()),
                    _ => Err(serde::de::Error::custom("Expected a string")),
                })
                .collect(),
            _ => Err(serde::de::Error::custom(
                "Expected a string or an array of strings",
            )),
        }
    }
}

371
372
373
374
375
376
377
378
379
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
380
381
    #[serde(deserialize_with = "prompt_serde::deserialize")]
    pub prompt: Vec<String>,
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
419
420
421
422
423

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

447
#[derive(Clone, Deserialize, Serialize, ToSchema)]
448
449
450
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
451
    #[schema(example = "1706270835")]
452
    pub created: u64,
453
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
454
455
456
457
458
459
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

460
#[derive(Clone, Deserialize, Serialize, ToSchema)]
461
462
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
463
    pub message: OutputMessage,
464
    pub logprobs: Option<ChatCompletionLogprobs>,
465
466
467
    pub finish_reason: String,
}

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
511
512
513
514
515
516
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
517
518
519
520
521
522
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

539
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
540
541
542
543
544
545
546
547
548
549
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
550
        output: Option<String>,
551
552
553
        created: u64,
        details: Details,
        return_logprobs: bool,
554
        tool_calls: Option<Vec<ToolCall>>,
555
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
580
581
582
583
584
585
586
587
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
588
                message,
589
                logprobs: return_logprobs
590
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
591
592
593
594
595
596
597
598
599
600
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
601
602
603
604
605
606
607
608
609
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
Nicolas Patry's avatar
Nicolas Patry committed
610

611
#[derive(Clone, Serialize, ToSchema)]
612
613
614
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
615
    #[schema(example = "1706270978")]
616
    pub created: u64,
617
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
618
619
620
621
622
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

623
#[derive(Clone, Serialize, ToSchema)]
624
625
626
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
627
    pub logprobs: Option<ChatCompletionLogprobs>,
628
629
630
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
631
632
633
634
635
636
637
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

638
639
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
640
641
642
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
643
644
}

Nicolas Patry's avatar
Nicolas Patry committed
645
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
646
647
648
649
650
651
652
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
653
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
654
655
656
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
657
658
}

drbh's avatar
drbh committed
659
#[allow(clippy::too_many_arguments)]
660
661
662
663
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
664
665
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
666
        created: u64,
667
        logprobs: Option<ChatCompletionLogprobs>,
668
669
        finish_reason: Option<String>,
    ) -> Self {
670
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
671
672
673
674
675
676
677
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
678
679
680
681
682
683
684
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
685
686
687
688
689
690
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
691
        };
692
693
694
695
696
697
698
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
699
                index: 0,
700
                delta,
701
702
703
704
705
706
707
708
709
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
710
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
711
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
712
    pub model: String,
drbh's avatar
drbh committed
713

714
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
715
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
716
717
718
719
720
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
721
    #[schema(example = "1.0")]
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
736
    #[schema(example = "false")]
737
738
739
740
741
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
742
    #[schema(example = "5")]
743
744
745
746
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
747
    #[schema(example = "32")]
748
749
750
751
752
753
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
754
    #[schema(nullable = true, example = "2")]
755
756
757
758
759
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
760
    #[schema(nullable = true, example = 0.1)]
761
762
    pub presence_penalty: Option<f32>,

763
764
765
766
767
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

768
769
770
771
772
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
773
774
775
776
777
778

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
779
    #[schema(nullable = true, example = 1.0)]
780
781
782
783
784
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
785
    #[schema(nullable = true, example = 0.95)]
786
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
787
788
789
790
791
792
793
794
795
796
797

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
798
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
799
800
801
802
803
804
805
806
807
808
809
810
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
}

fn default_tool_prompt() -> Option<String> {
    Some(
811
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

856
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
857
858
859
860
861
862
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

863
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
864
865
866
867
868
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

869
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
870
871
872
873
874
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

875
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
891
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
892
893
894
895
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
896
897
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
898
899
900
901
902
903
904
905
906
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
907
908
}

909
#[derive(Clone, Serialize, Deserialize, Default)]
910
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
911
    messages: Vec<TextMessage>,
912
913
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
914
    add_generation_prompt: bool,
915
916
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
917
918
}

Nicolas Patry's avatar
Nicolas Patry committed
919
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
920
pub(crate) struct ToolCall {
921
    pub id: String,
drbh's avatar
drbh committed
922
923
924
925
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
926
927
928
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Url {
    url: String,
drbh's avatar
drbh committed
929
930
}

Nicolas Patry's avatar
Nicolas Patry committed
931
932
933
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct ImageUrl {
    image_url: Url,
drbh's avatar
drbh committed
934
935
}

Nicolas Patry's avatar
Nicolas Patry committed
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Text {
    text: String,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
enum MessageChunk {
    Text(Text),
    ImageUrl(ImageUrl),
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
    #[serde(deserialize_with = "message_content_serde::deserialize")]
    content: Vec<MessageChunk>,
drbh's avatar
drbh committed
956
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
957
958
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
959
960
961
962
}

mod message_content_serde {
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
963
    use serde::{Deserialize, Deserializer};
drbh's avatar
drbh committed
964

Nicolas Patry's avatar
Nicolas Patry committed
965
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<MessageChunk>, D::Error>
drbh's avatar
drbh committed
966
967
968
    where
        D: Deserializer<'de>,
    {
Nicolas Patry's avatar
Nicolas Patry committed
969
970
971
972
973
        #[derive(Deserialize)]
        #[serde(untagged)]
        enum Message {
            Text(String),
            Chunks(Vec<MessageChunk>),
drbh's avatar
drbh committed
974
        }
Nicolas Patry's avatar
Nicolas Patry committed
975
976
977
978
979
980
981
982
        let message: Message = Deserialize::deserialize(deserializer)?;
        let chunks = match message {
            Message::Text(text) => {
                vec![MessageChunk::Text(Text { text })]
            }
            Message::Chunks(s) => s,
        };
        Ok(chunks)
drbh's avatar
drbh committed
983
984
985
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
986
987
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
988
989
990
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
            content: value
                .content
                .into_iter()
                .map(|c| match c {
                    MessageChunk::Text(Text { text }) => text,
                    MessageChunk::ImageUrl(image) => {
                        let url = image.image_url.url;
                        format!("![]({url})")
                    }
                })
                .collect::<Vec<_>>()
                .join(""),
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1026
1027
}

1028
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1029
pub(crate) struct GenerateRequest {
1030
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1031
1032
1033
1034
1035
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1036
1037
1038
1039
1040
1041
1042
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1043
    #[schema(default = "false")]
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1056
1057
1058
1059
1060
1061
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1062
    #[schema(nullable = true, example = - 0.34)]
1063
1064
1065
    logprob: f32,
}

1066
#[derive(Debug, Serialize, ToSchema, Clone)]
1067
1068
1069
1070
1071
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1072
    #[schema(nullable = true, example = - 0.34)]
1073
    logprob: f32,
1074
1075
    #[schema(example = "false")]
    special: bool,
1076
1077
}

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

1090
1091
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
1092
#[schema(example = "Length")]
1093
1094
1095
1096
1097
1098
1099
1100
1101
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1102

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1125
1126
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1127
1128
}

1129
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1130
pub(crate) struct Details {
1131
1132
1133
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1134
    pub generated_tokens: u32,
1135
    #[schema(nullable = true, example = 42)]
1136
    pub seed: Option<u64>,
1137
1138
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1139
1140
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1141
1142
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1143
1144
}

1145
#[derive(Serialize, ToSchema)]
1146
pub(crate) struct GenerateResponse {
1147
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1148
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1149
1150
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1151
}
1152

1153
1154
1155
1156
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1157
1158
1159
1160
1161
1162
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1163
    #[schema(nullable = true, example = 42)]
1164
1165
1166
1167
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1168
pub(crate) struct StreamResponse {
1169
    pub index: u32,
1170
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1171
1172
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1173
    #[schema(nullable = true, default = "null", example = "test")]
1174
    pub generated_text: Option<String>,
1175
1176
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1177
1178
}

1179
#[derive(Serialize, ToSchema)]
1180
1181
pub(crate) struct ErrorResponse {
    pub error: String,
1182
    pub error_type: String,
1183
}
1184
1185

#[cfg(test)]
1186
mod tests {
1187
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1188
    use serde_json::json;
1189
1190
    use tokenizers::Tokenizer;

1191
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1192
1193
1194
1195
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1196
    }
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1211
1212
1213
1214
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1246
1247
1248
1249
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1250
1251
1252
1253
1254
1255
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
Nicolas Patry's avatar
Nicolas Patry committed
1256
1257
1258

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1259
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1260
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1261
1262
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1263
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1264
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
                content: vec![MessageChunk::Text(Text {
                    text: "What is Deep Learning?".to_string()
                }),],
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1282
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1283
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1284
1285
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1286
1287
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1288
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1289
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1290
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1352
}